scholarly journals Dynamin Forms a Src Kinase–sensitive Complex with Cbl and Regulates Podosomes and Osteoclast Activity

2005 ◽  
Vol 16 (7) ◽  
pp. 3301-3313 ◽  
Author(s):  
Angela Bruzzaniti ◽  
Lynn Neff ◽  
Archana Sanjay ◽  
William C. Horne ◽  
Pietro De Camilli ◽  
...  

Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption.

2012 ◽  
Vol 209 (7) ◽  
pp. 1363-1377 ◽  
Author(s):  
Zuyue Sun ◽  
Xiujuan Li ◽  
Sara Massena ◽  
Simone Kutschera ◽  
Narendra Padhan ◽  
...  

Regulation of vascular endothelial (VE) growth factor (VEGF)–induced permeability is critical in physiological and pathological processes. We show that tyrosine phosphorylation of VEGF receptor 2 (VEGFR2) at Y951 facilitates binding of VEGFR2 to the Rous sarcoma (Src) homology 2-domain of T cell–specific adaptor (TSAd), which in turn regulates VEGF-induced activation of the c-Src tyrosine kinase and vascular permeability. c-Src was activated in vivo and in vitro in a VEGF/TSAd-dependent manner, and was regulated via increased phosphorylation at pY418 and reduced phosphorylation at pY527. Tsad silencing blocked VEGF-induced c-Src activation, but did not affect pathways involving phospholipase Cγ, extracellular regulated kinase, and endothelial nitric oxide. VEGF-induced rearrangement of VE–cadherin–positive junctions in endothelial cells isolated from mouse lungs, or in mouse cremaster vessels, was dependent on TSAd expression, and TSAd formed a complex with VE-cadherin, VEGFR2, and c-Src at endothelial junctions. Vessels in tsad−/− mice showed undisturbed flow and pressure, but impaired VEGF-induced permeability, as measured by extravasation of Evans blue, dextran, and microspheres in the skin and the trachea. Histamine-induced extravasation was not affected by TSAd deficiency. We conclude that TSAd is required for VEGF-induced, c-Src-mediated regulation of endothelial cell junctions and for vascular permeability.


1989 ◽  
Vol 109 (6) ◽  
pp. 3455-3464 ◽  
Author(s):  
S C Mueller ◽  
T Kelly ◽  
M Z Dai ◽  
H N Dai ◽  
W T Chen

We have examined the early events of cellular attachment and spreading (10-30 min) by allowing chick embryonic fibroblasts transformed by Rous sarcoma virus to interact with fibronectin immobilized on matrix beads. The binding activity of cells to fibronectin beads was sensitive to both the mAb JG22E and the GRGDS peptide, which inhibit the interaction between integrin and fibronectin. The precise distribution of cytoskeleton components and integrin was determined by immunocytochemistry of frozen thin sections. In suspended cells, the distribution of talin was diffuse in the cytoplasm and integrin was localized at the cell surface. Within 10 min after binding of cells and fibronectin beads at 22 degrees C or 37 degrees C, integrin and talin aggregated at the membrane adjacent to the site of bead attachment. In addition, an internal pool of integrin-positive vesicles accumulated. The mAb ES238 directed against the extracellular domain of the avian beta 1 integrin subunit, when coupled to beads, also induced the aggregation of talin at the membrane, whereas ES186 directed against the intracellular domain of the beta 1 integrin subunit did not. Cells attached and spread on Con A beads, but neither integrin nor talin aggregated at the membrane. After 30 min, when many of the cells were at a more advanced stage of spreading around beads or phagocytosing beads, alpha-actinin and actin, but not vinculin, form distinctive aggregates at sites along membranes associated with either fibronectin or Con A beads. Normal cells also rapidly formed aggregates of integrin and talin after binding to immobilized fibronectin in a manner that was similar to the transformed cells, suggesting that the aggregation process is not dependent upon activity of the pp60v-src tyrosine kinase. Thus, the binding of cells to immobilized fibronectin caused integrin-talin coaggregation at the sites of membrane-ECM contact, which can initiate the cytoskeletal events necessary for cell adhesion and spreading.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yao Lu ◽  
Deng Huang ◽  
Baolin Wang ◽  
Bowen Zheng ◽  
Jialong Liu ◽  
...  

Hepatocellular carcinoma (HCC) is characterized by a high incidence of metastasis. The dynamic remodeling of the actin cytoskeleton plays an important role in the invasion and migration of HCC cells. In previous studies, we found that CAPZA1, a capping protein, can promote EMT of HCC cells by regulating the remodeling of the actin filament (F-actin) cytoskeleton, thus promoting the invasion and migration of HCC cells. In this study, we found that FAM21C may have a regulatory effect on CAPZA1, and we conducted an in-depth study on its potential regulatory mechanism. First, we found that FAM21C is highly expressed in HCC tissues and its high expression could promote the malignant progression of HCC. Meanwhile, the high expression of FAM21C promoted the invasion and migration of HCC cells in vitro and in vivo. Further, FAM21C interacted with CAPZA1, and their binding inhibited the capping capacity of CAPZA1, thus promoting the invasion and migration of HCC cells. This effect of FAM21C was abolished by mutating the CP-interacting (CPI) domain, the CAPZA1 binding site on FAM21C. In conclusion, high expression of FAM21C in HCC tissues can promote malignant progression of HCC and its potential mechanism involves FAM21C inhibition of CAPZA1 capping capacity by binding to CAPZA1, which drives F-actin cytoskeleton remodeling, and thus promotes invasion and migration of HCC cells.


2021 ◽  
Vol 134 (3) ◽  
pp. jcs253534
Author(s):  
Sara Tur-Gracia ◽  
Narcisa Martinez-Quiles

ABSTRACTImmune cells are especially dependent on the proper functioning of the actin cytoskeleton, and both innate and adaptive responses rely on it. Leukocytes need to adhere not only to substrates but also to cells in order to form synapses that pass on instructions or kill infected cells. Neutrophils literally squeeze their cell body during blood extravasation and efficiently migrate to the inflammatory focus. Moreover, the development of immune cells requires the remodeling of their cytoskeleton as it depends on, among other processes, adhesive contacts and migration. In recent years, the number of reports describing cytoskeletal defects that compromise the immune system has increased immensely. Furthermore, a new emerging paradigm points toward a role for the cellular actin content as an essential component of the so-called homeostasis-altering molecular processes that induce the activation of innate immune signaling pathways. Here, we review the role of critical actin-cytoskeleton-remodeling proteins, including the Arp2/3 complex, cofilin, coronin and WD40-repeat containing protein 1 (WDR1), in immune pathophysiology, with a special focus on autoimmune and autoinflammatory traits.


2010 ◽  
Vol 84 (13) ◽  
pp. 6276-6287 ◽  
Author(s):  
Kari A. Dilley ◽  
Devon Gregory ◽  
Marc C. Johnson ◽  
Volker M. Vogt

ABSTRACT The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPXnL. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPXnL motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.


2006 ◽  
Vol 20 (11) ◽  
pp. 2864-2875 ◽  
Author(s):  
Romain Barrès ◽  
Thierry Grémeaux ◽  
Philippe Gual ◽  
Teresa Gonzalez ◽  
Jean Gugenheim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urna Kansakar ◽  
Wei Wang ◽  
Vesna Markovic ◽  
Khalid Sossey-Alaoui

AbstractPost-translational modification of proteins, such as tyrosine phosphorylation, plays a major role in driving the oncogenic activity of oncogenes. WAVE3 (WASF3), an adaptor and actin cytoskeleton remodeling protein, contributes to cell migration, cancer cell invasion, and metastasis. WAVE3 plays a vital role in the progression and metastasis of triple negative breast cancer (TNBC), in part through the regulation of cancer stem cells (CSCs). Several studies have shown that WAVE3 tyrosine phosphorylation is required for its oncogenic activity. Moreover, our recent study showed that the proline rich domain (PRD) of WAVE3 is required for maintenance of the CSC niche in breast cancer by regulating the nuclear translocation of the CSC-specific nuclear transcription factor YB1. Here, we show that the PRD domain of WAVE3 and its phosphorylation are essential for driving the oncogenic activity of WAVE3. We show that phosphorylation of WAVE3 PRD is essential for migration and invasion of breast cancer cells in vitro, as well as tumor growth and metastasis in vivo. Mechanistically, we show that phosphorylation of the WAVE3 PRD is essential for interaction between WAVE3 and YB1. Loss of PRD phosphorylation inhibits such interaction and the YB1-mediated activation of expression of CSC markers, as well as the WAVE3 mediated activation of EMT. Together, our study identifies a novel role of WAVE3 and its PRD domain in the regulation of the invasion metastasis cascade in BC that is independent of the known function of WAVE3 as an actin cytoskeleton remodeling protein through the WAVE regulatory complex (WRC).


2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


Sign in / Sign up

Export Citation Format

Share Document