scholarly journals CDK Phosphorylation of a Novel NLS-NES Module Distributed between Two Subunits of the Mcm2-7 Complex Prevents Chromosomal Rereplication

2005 ◽  
Vol 16 (10) ◽  
pp. 5026-5039 ◽  
Author(s):  
Muluye E. Liku ◽  
Van Q. Nguyen ◽  
Audrey W. Rosales ◽  
Kaoru Irie ◽  
Joachim J. Li

Cyclin-dependent kinases (CDKs) use multiple mechanisms to block reassembly of prereplicative complexes (pre-RCs) at replication origins to prevent inappropriate rereplication. In Saccharomyces cerevisiae, one of these mechanisms promotes the net nuclear export of a pre-RC component, the Mcm2-7 complex, during S, G2, and M phases. Here we identify two partial nuclear localization signals (NLSs) on Mcm2 and Mcm3 that are each necessary, but not sufficient, for nuclear localization of the Mcm2-7 complex. When brought together in cis, however, the two partial signals constitute a potent NLS, sufficient for robust nuclear localization when fused to an otherwise cytoplasmic protein. We also identify a Crm1-dependent nuclear export signal (NES) adjacent to the Mcm3 NLS. Remarkably, the Mcm2-Mcm3 NLS and the Mcm3 NES are sufficient to form a transport module that recapitulates the cell cycle-regulated localization of the entire Mcm2-7 complex. Moreover, we show that CDK regulation promotes net export by phosphorylation of the Mcm3 portion of this module and that nuclear export of the Mcm2-7 complex is sufficient to disrupt replication initiation. We speculate that the distribution of partial transport signals among distinct subunits of a complex may enhance the specificity of protein localization and raises the possibility that previously undetected distributed transport signals are used by other multiprotein complexes.

2021 ◽  
Author(s):  
Xiaohui Xu ◽  
Han Wang ◽  
Jiqin Liu ◽  
Shuying Han ◽  
Miaomiao Lin ◽  
...  

Abstract Background: OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation?Results: In this study, we characterized they interacted with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαDIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαDIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal. Similarly, we found that OsIMαDIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1 with an extra nuclear export signal compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae.Conclusion: These results indicated that OsWRKY62 localization is a consequence of competition binding between rice importins and exportins. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.


2005 ◽  
Vol 79 (11) ◽  
pp. 7172-7181 ◽  
Author(s):  
Eun-A Choi ◽  
Thomas J. Hope

ABSTRACT The Rex proteins of the delta-retroviruses act to facilitate the export of intron-containing viral RNAs. The Rex of bovine leukemia virus (BLV) is poorly characterized. To gain a better understanding of BLV Rex, we generated a reporter assay to measure BLV Rex function and used it to screen a series of point and deletion mutations. Using this approach, we were able to identify the nuclear export signal of BLV Rex. Further, we identified a dominant-negative form of BLV Rex. Protein localization analysis revealed that wild-type BLV Rex had a punctate nuclear localization and was associated with nuclear pores. In contrast, the dominant-negative BLV Rex mutation had a diffuse nuclear localization and no nuclear pore association. Overexpression of the dominant-negative BLV Rex altered the localization of the wild-type protein. This dominant-negative derivative of BLV Rex could be a useful tool to test the concept of intracellular immunization against viral infection in a large animal model.


Parasitology ◽  
2012 ◽  
Vol 139 (13) ◽  
pp. 1697-1710 ◽  
Author(s):  
R. URIBE ◽  
J. ALMARAZ BARRERA MA DE ◽  
M. ROBLES-FLORES ◽  
G. MENDOZA HERNÁNDEZ ◽  
A. GONZÁLEZ-ROBLES ◽  
...  

SUMMARYEhNCABP166 is an Entamoeba histolytica actin-binding protein that localizes to the nucleus and cytoplasm. Bioinformatic analysis of the EhNCABP166 amino acid sequence shows the presence of 3 bipartite nuclear localization signals (NLS) and a nuclear export signal (NES). The present study aimed to investigate the functionality of these signals in 3 ways. First, we fused each potential NLS to a cytoplasmic domain of ehFLN to determine whether the localization of this domain could be altered by the presence of the NLSs. Furthermore, the localization of each domain of EhNCABP166 was determined. Similarly, we generated mutations in the first block of bipartite signals from the domains that contained these signals. Additionally, we added an NES to 2 constructs that were then evaluated. We confirmed the intranuclear localization of EhNCABP166 using transmission electron microscopy. Fusion of each NLS resulted in shuttling of the cytoplasmic domain to the nucleus. With the exception of 2 domains, all of the evaluated domains localized within the nucleus. A mutation in the first block of bipartite signals affected the localization of the domains containing an NLS. The addition of an NES shifted the localization of these domains to the cytoplasm. The results presented here establish EhNCABP166 as a protein containing functional nuclear localization signals and a nuclear export signal.


1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


2008 ◽  
Vol 83 (6) ◽  
pp. 2531-2539 ◽  
Author(s):  
Xiaojuan Li ◽  
Fanxiu Zhu

ABSTRACT Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.


2008 ◽  
Vol 82 (22) ◽  
pp. 11283-11293 ◽  
Author(s):  
Maya Harb ◽  
Michelle M. Becker ◽  
Damien Vitour ◽  
Carolina H. Baron ◽  
Patrice Vende ◽  
...  

ABSTRACT Rotavirus nonstructural protein NSP3 interacts specifically with the 3′ end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2229-2236 ◽  
Author(s):  
Frank A.E. Kruyt ◽  
Hagop Youssoufian

Abstract Fanconi anemia (FA) is an autosomal recessive disease characterized by chromosomal instability, bone marrow failure, and a high risk of developing malignancies. Although the disorder is genetically heterogeneous, all FA cells are defined by their sensitivity to the apoptosis-inducing effect of cross-linking agents, such as mitomycin C (MMC). The cloned FA disease genes, FAC and FAA, encode proteins with no homology to each other or to any known protein. We generated a highly specific antibody against FAA and found the protein in both the cytoplasm and nucleus of mammalian cells. By subcellular fractionation, FAA is also associated with intracellular membranes. To identify the subcellular compartment that is relevant for FAA activity, we appended nuclear export and nuclear localization signals to the carboxy terminus of FAA and enriched its localization in either the cytoplasm or the nucleus. Nuclear localization of FAA was both necessary and sufficient to correct MMC sensitivity in FA-A cells. In addition, we found no evidence for an interaction between FAA and FAC either in vivo or in vitro. Together with a previous finding that FAC is active in the cytoplasm but not in the nucleus, our results indicate that FAA and FAC function in separate subcellular compartments. Thus, FAA and FAC, if functionally linked, are more likely to be in a linear pathway rather than form a macromolecular complex to protect against cross-linker cytotoxicity.


2017 ◽  
Vol 46 (D1) ◽  
pp. D503-D508 ◽  
Author(s):  
Michael Bernhofer ◽  
Tatyana Goldberg ◽  
Silvana Wolf ◽  
Mohamed Ahmed ◽  
Julian Zaugg ◽  
...  

1999 ◽  
Vol 354 (1389) ◽  
pp. 1601-1609 ◽  
Author(s):  
R. T. Hay ◽  
L. Vuillard ◽  
J. M. P. Desterro ◽  
M. S. Rodriguez

In unstimulated cells the transcription factor NF–κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Ultimately activation of NF–κB is achieved by ubiquitination and proteasome–mediated degradation of IκBα and we have therefore investigated factors which control this proteolysis. Signal–induced degradation of IκBα exposes the nuclear localization signal of NF–κB, thus allowing it to translocate into the nucleus and activate transcription from responsive genes. An autoregulatory loop is established when NF–κB induces expression of the IκBα gene and newly synthesized IκBα accumulates in the nucleus where it negatively regulates NF–κB–dependent transcription. As part of this post–induction repression, the nuclear export signal on IκBα mediates transport of NF–κB–IκBα complexes from the nucleus to the cytoplasm. As nuclear export of IκBα is blocked by leptomycin B this drug was used to examine the effect of cellular location on susceptibility of IκBα to signal–induced degradation. In the presence of leptomycin B, IκBα is accumulated in the nucleus and in this compartment is resistant to signal–induced degradation. Thus signal–induced degradation of IκBα is mainly, if not exclusively a cytoplasmic process. An efficient nuclear export of IκBα is therefore essential for maintaining a low level of IκBα in the nucleus and allowing NF–κB to be transcriptionally active upon cell stimulation. We have detected a modified form of IκBα, conjugated to the small ubiquitin–like protein SUMO–1, which is resistant to signal–induced degradation. SUMO–1 modified IκBα remains associated with NF–κB and thus overexpression of SUMO–1 inhibits the signal–induced activation of NF–κB–dependent transcription. Reconstitution of the conjugation reaction with highly purified proteins demonstrated that in the presence of a novel E1 SUMO–1 activating enzyme, Ubch9 directly conjugated SUMO–1 to IκBα on residues K21 and K22, which are also used for ubiquitin modification. Thus, while ubiquitination targets proteins for rapid degradation, SUMO–1 modification acts antagonistically to generate proteins resistant to degradation.


Sign in / Sign up

Export Citation Format

Share Document