scholarly journals Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly

2006 ◽  
Vol 17 (9) ◽  
pp. 4105-4117 ◽  
Author(s):  
Shu Jiang ◽  
Sung W. Rhee ◽  
Paul A. Gleeson ◽  
Brian Storrie

In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.

2003 ◽  
Vol 14 (12) ◽  
pp. 5011-5018 ◽  
Author(s):  
Sapna Puri ◽  
Adam D. Linstedt

It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly.


1999 ◽  
Vol 190 (4) ◽  
pp. 523-534 ◽  
Author(s):  
Nathalie Thieblemont ◽  
Samuel D. Wright

Addition of lipopolysaccharide (LPS) to cells in the form of LPS–soluble (s)CD14 complexes induces strong cellular responses. During this process, LPS is delivered from sCD14 to the plasma membrane, and the cell-associated LPS is then rapidly transported to an intracellular site. This transport appears to be important for certain cellular responses to LPS, as drugs that block transport also inhibit signaling and cells from LPS-hyporesponsive C3H/HeJ mice fail to exhibit this transport. To identify the intracellular destination of fluorescently labeled LPS after its delivery from sCD14 into cells, we have made simultaneous observations of different organelles using fluorescent vital dyes or probes. Endosomes, lysosomes, the endoplasmic reticulum, and the Golgi apparatus were labeled using Texas red (TR)–dextran, LysoTracker™ Red DND-99, DiOC6(3), and boron dipyrromethane (BODIPY)–ceramide, respectively. After 30 min, LPS did not colocalize with endosomes, lysosomes, or endoplasmic reticulum in polymorphonuclear leukocytes, although some LPS-positive vesicles overlapped with the endosomal marker, fluorescent dextran. On the other hand, LPS did appear to colocalize with two markers of the Golgi apparatus, BODIPY–ceramide and TRITC (tetramethylrhodamine isothiocyanate)–labeled cholera toxin B subunit. We further confirmed the localization of LPS in the Golgi apparatus using an epithelial cell line, HeLa, which responds to LPS–sCD14 complexes in a CD14-dependent fashion: BODIPY–LPS was internalized and colocalized with fluorescently labeled Golgi apparatus probes in live HeLa cells. Morphological disruption of the Golgi apparatus in brefeldin A–treated HeLa cells caused intracellular redistribution of fluorescent LPS. These results are consistent with the Golgi apparatus being the primary delivery site of monomeric LPS.


2002 ◽  
Vol 13 (9) ◽  
pp. 3148-3161 ◽  
Author(s):  
Annette L. Henneberry ◽  
Marcia M. Wright ◽  
Christopher R. McMaster

Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ∼50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase α, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase α is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase α to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214–228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.


Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


2020 ◽  
Vol 3 (2) ◽  
pp. e201800161 ◽  
Author(s):  
Mainak Bose ◽  
Susanta Chatterjee ◽  
Yogaditya Chakrabarty ◽  
Bahnisikha Barman ◽  
Suvendra N Bhattacharyya

microRNAs are short regulatory RNAs in metazoan cells. Regulation of miRNA activity and abundance is evident in human cells where availability of target messages can influence miRNA biogenesis by augmenting the Dicer1-dependent processing of precursors to mature microRNAs. Requirement of subcellular compartmentalization of Ago2, the key component of miRNA repression machineries, for the controlled biogenesis of miRNPs is reported here. The process predominantly happens on the polysomes attached with the endoplasmic reticulum for which the subcellular Ago2 trafficking is found to be essential. Mitochondrial tethering of endoplasmic reticulum and its interaction with endosomes controls Ago2 availability. In cells with depolarized mitochondria, miRNA biogenesis gets impaired, which results in lowering of de novo–formed mature miRNA levels and accumulation of miRNA-free Ago2 on endosomes that fails to interact with Dicer1 and to traffic back to endoplasmic reticulum for de novo miRNA loading. Thus, mitochondria by sensing the cellular context regulates Ago2 trafficking at the subcellular level, which acts as a rate-limiting step in miRNA biogenesis process in mammalian cells.


1984 ◽  
Vol 68 (1) ◽  
pp. 83-94
Author(s):  
C.J. Flickinger

The production, transport, and disposition of material labelled with [3H]mannose were studied in microsurgically enucleated and control amoebae. Cells were injected with the precursor and samples were prepared for electron-microscope radioautography at intervals, up to 24 h later. Control cells showed heavy labelling of the rough endoplasmic reticulum and the Golgi apparatus at early intervals after injection. Later, labelling of groups of small vesicles increased, and the percentage of grains over the cell surface peaked 12 h after administration of the precursor. Two major changes were detected in enucleate amoebae. First, the kinetics of labelling of cell organelles with [3H]mannose were altered in the absence of the nucleus. The Golgi apparatus and cell surface both displayed maximal labelling at later intervals in enucleates, and the percentage of grains over the rough endoplasmic reticulum varied less with time in enucleated than in control cells. Second, the distribution of radioactivity was altered. A greater percentage of grains was associated with lysosomes in enucleates than in control cells. The change in the kinetics of labelling of the endoplasmic reticulum, Golgi apparatus and cell surface indicates that intracellular transport of surface material was slower in the absence of the nucleus. It is suggested that this is related to the decreased motility of enucleate cells.


1973 ◽  
Vol 12 (3) ◽  
pp. 911-923
Author(s):  
R. J. SKAER

Acetylcholinesterase is present in human red cells but cannot be demonstrated by the copper thiocholine test. The enzyme is revealed, however, in the perinuclear cisterna, endoplasmic reticulum and Golgi apparatus of red cell precursors. It is suggested that 2 forms of the enzyme are present, one of which can be demonstrated by the copper thiocholine test, the other cannot; one form may be the precursor of the other. These observations may cast light on the kinetics of red cell replacement and on the interpretation of the results from the copper thiocholine test on other tissues such as the nervous system.


1998 ◽  
Vol 333 (3) ◽  
pp. 779-786 ◽  
Author(s):  
Jan Willem KOK ◽  
Teresa BABIA ◽  
Karin KLAPPE ◽  
Gustavo EGEA ◽  
Dick HOEKSTRA

Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 °C, or in streptolysin O-permeabilized cells by manipulating the intracellular environment. In both cases, Cer transfer was not inhibited, as demonstrated by the biosynthesis of ceramide monohexosides and sphingomyelin (SM) de novo from metabolically (with [14C]serine) labelled Cer. This assay is based on the knowledge that Cer is synthesized, starting from serine and palmitoyl-CoA, at the ER, whereas glycosphingolipids and SM are synthesized in the (early) Golgi apparatus. Formation of [14C]glycosphingolipids and [14C]SM was observed under conditions that block vesicle-mediated vesicular stomatitis virus glycoprotein transport. These results indicate that [14C]Cer is transferred from ER to Golgi by a non-vesicular mechanism.


2006 ◽  
Vol 282 (7) ◽  
pp. 4702-4710 ◽  
Author(s):  
Wen-Xing Ding ◽  
Hong-Min Ni ◽  
Wentao Gao ◽  
Yi-Feng Hou ◽  
Melissa A. Melan ◽  
...  

Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.


Sign in / Sign up

Export Citation Format

Share Document