scholarly journals Atg27 Is Required for Autophagy-dependent Cycling of Atg9

2007 ◽  
Vol 18 (2) ◽  
pp. 581-593 ◽  
Author(s):  
Wei-Lien Yen ◽  
Julie E. Legakis ◽  
Usha Nair ◽  
Daniel J. Klionsky

Autophagy is a catabolic pathway for the degradation of cytosolic proteins or organelles and is conserved among all eukaryotic cells. The hallmark of autophagy is the formation of double-membrane cytosolic vesicles, termed autophagosomes, which sequester cytoplasm; however, the mechanism of vesicle formation and the membrane source remain unclear. In the yeast Saccharomyces cerevisiae, selective autophagy mediates the delivery of specific cargos to the vacuole, the analog of the mammalian lysosome. The transmembrane protein Atg9 cycles between the mitochondria and the pre-autophagosomal structure, which is the site of autophagosome biogenesis. Atg9 is thought to mediate the delivery of membrane to the forming autophagosome. Here, we characterize a second transmembrane protein Atg27 that is required for specific autophagy in yeast. Atg27 is required for Atg9 cycling and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex. These data support a hypothesis that multiple membrane sources supply the lipids needed for autophagosome formation.

2005 ◽  
Vol 16 (12) ◽  
pp. 5843-5856 ◽  
Author(s):  
Fulvio Reggiori ◽  
Iryna Monastyrska ◽  
Takahiro Shintani ◽  
Daniel J. Klionsky

Autophagy is a catabolic multitask transport route that takes place in all eukaryotic cells. During starvation, cytoplasmic components are randomly sequestered into huge double-membrane vesicles called autophagosomes and delivered into the lysosome/vacuole where they are destroyed. Cells are able to modulate autophagy in response to their needs, and under certain circumstances, cargoes such as aberrant protein aggregates, organelles and bacteria can be selectively and exclusively incorporated into autophagosomes. In the yeast Saccharomyces cerevisiae, for example, double-membrane vesicles are used to transport the Ape1 protease into the vacuole, or for the elimination of superfluous peroxisomes. In the present study we reveal that in this organism, actin plays a role in these two types of selective autophagy but not in the nonselective, bulk process. In particular, we show that precursor Ape1 is not correctly recruited to the PAS, the putative site of double-membrane vesicle biogenesis, and superfluous peroxisomes are not degraded in a conditional actin mutant. These phenomena correlate with a defect in Atg9 trafficking from the mitochondria to the PAS.


2020 ◽  
Vol 295 (48) ◽  
pp. 16292-16298
Author(s):  
Sota Meguro ◽  
Xizhen Zhuang ◽  
Hiromi Kirisako ◽  
Hitoshi Nakatogawa

In macroautophagy (hereafter autophagy), cytoplasmic molecules and organelles are randomly or selectively sequestered within double-membrane vesicles called autophagosomes and delivered to lysosomes or vacuoles for degradation. In selective autophagy, the specificity of degradation targets is determined by autophagy receptors. In the budding yeast Saccharomyces cerevisiae, autophagy receptors interact with specific targets and Atg11, resulting in the recruitment of a protein complex that initiates autophagosome formation. Previous studies have revealed that autophagy receptors are regulated by posttranslational modifications. In selective autophagy of peroxisomes (pexophagy), the receptor Atg36 localizes to peroxisomes by binding to the peroxisomal membrane protein Pex3. We previously reported that Atg36 is phosphorylated by Hrr25 (casein kinase 1δ), increasing the Atg36–Atg11 interaction and thereby stimulating pexophagy initiation. However, the regulatory mechanisms underlying Atg36 phosphorylation are unknown. Here, we show that Atg36 phosphorylation is abolished in cells lacking Pex3 or expressing a Pex3 mutant defective in the interaction with Atg36, suggesting that the interaction with Pex3 is essential for the Hrr25-mediated phosphorylation of Atg36. Using recombinant proteins, we further demonstrated that Pex3 directly promotes Atg36 phosphorylation by Hrr25. A co-immunoprecipitation analysis revealed that the interaction of Atg36 with Hrr25 depends on Pex3. These results suggest that Pex3 increases the Atg36–Hrr25 interaction and thereby stimulates Atg36 phosphorylation on the peroxisomal membrane. In addition, we found that Pex3 binding protects Atg36 from proteasomal degradation. Thus, Pex3 confines Atg36 activity to the peroxisome by enhancing its phosphorylation and stability on this organelle.


2007 ◽  
Vol 18 (3) ◽  
pp. 919-929 ◽  
Author(s):  
Chiung-Ying Chang ◽  
Wei-Pang Huang

Autophagy is a catabolic membrane-trafficking mechanism conserved in all eukaryotic cells. In addition to the nonselective transport of bulk cytosol, autophagy is responsible for efficient delivery of the vacuolar enzyme Ape1 precursor (prApe1) in the budding yeast Saccharomyces cerevisiae, suggesting the presence of a prApe1 sorting machinery. Sequential interactions between Atg19-Atg11 and Atg19-Atg8 pairs are thought responsible for targeting prApe1 to the vesicle formation site, the preautophagosomal structure (PAS), and loading it into transport vesicles, respectively. However, the different patterns of prApe1 transport defect seen in the atg11Δ and atg19Δ strains seem to be incompatible with this model. Here we report that prApe1 could not be targeted to the PAS and failed to be delivered into the vacuole in atg8Δ atg11Δ double knockout cells regardless of the nutrient conditions. We postulate that Atg19 mediates a dual interaction prApe1-sorting mechanism through independent, instead of sequential, interactions with Atg11 and Atg8. In addition, to efficiently deliver prApe1 to the vacuole, a proper interaction between Atg11 and Atg9 is indispensable. We speculate that Atg11 may elicit a cargo-loading signal and induce Atg9 shuttling to a specific PAS site, where Atg9 relays the signal and recruits other Atg proteins to induce vesicle formation.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yo-hei Yamamoto ◽  
Takeshi Noda

Abstract Autophagy is a process in which a myriad membrane structures called autophagosomes are formed de novo in a single cell, which deliver the engulfed substrates into lysosomes for degradation. The size of the autophagosomes is relatively uniform in non-selective autophagy and variable in selective autophagy. It has been recently established that autophagosome formation occurs near the endoplasmic reticulum (ER). In this review, we have discussed recent advances in the relationship between autophagosome formation and endoplasmic reticulum. Autophagosome formation occurs near the ER subdomain enriched with phospholipid synthesizing enzymes like phosphatidylinositol synthase (PIS)/CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and choline/ethanolamine phosphotransferase 1 (CEPT1). Autophagy-related protein 2 (Atg2), which is involved in autophagosome formation has a lipid transfer capacity and is proposed to directly transfer the lipid molecules from the ER to form autophagosomes. Vacuole membrane protein 1 (VMP1) and transmembrane protein 41b (TMEM41b) are ER membrane proteins that are associated with the formation of the subdomain. Recently, we have reported that an uncharacterized ER membrane protein possessing the DNAJ domain, called ERdj8/DNAJC16, is associated with the regulation of the size of autophagosomes. The localization of ERdj8/DNAJC16 partially overlaps with the PIS-enriched ER subdomain, thereby implying its association with autophagosome size determination.


2012 ◽  
Vol 40 (4) ◽  
pp. 850-855 ◽  
Author(s):  
Katherine E. Sloan ◽  
Claudia Schneider ◽  
Nicholas J. Watkins

Most RNAs in eukaryotic cells are produced as precursors that undergo processing at the 3′ and/or 5′ end to generate the mature transcript. In addition, many transcripts are degraded not only as part of normal recycling, but also when recognized as aberrant by the RNA surveillance machinery. The exosome, a conserved multiprotein complex containing two nucleases, is involved in both the 3′ processing and the turnover of many RNAs in the cell. A series of factors, including the TRAMP (Trf4–Air2–Mtr4 polyadenylation) complex, Mpp6 and Rrp47, help to define the targets to be processed and/or degraded and assist in exosome function. The majority of the data on the exosome and RNA maturation/decay have been derived from work performed in the yeast Saccharomyces cerevisiae. In the present paper, we provide an overview of the exosome and its role in RNA processing/degradation and discuss important new insights into exosome composition and function in human cells.


2021 ◽  
Author(s):  
Keisuke Mochida ◽  
Toshifumi Otani ◽  
Yuto Katsumata ◽  
Hiromi Kirisako ◽  
Chika Kakuta ◽  
...  

In selective autophagy of the nucleus (hereafter nucleophagy), nucleus-derived double membrane vesicles (NDVs) are formed, sequestered within autophagosomes, and delivered to lysosomes or vacuoles for degradation. In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a nucleophagy receptor, which interacts with Atg8 to target NDVs to forming autophagosomal membranes. In this study, we revealed that Atg39 is anchored to the outer nuclear membrane (ONM) via its transmembrane domain and also associated with the inner nuclear membrane (INM) via membrane-binding amphipathic helices (APHs) in its perinuclear space region, thereby linking these membranes. We also revealed that overaccumulation of Atg39 causes the NE to protrude towards the cytoplasm, and the tips of the protrusions are pinched off to generate NDVs. The APHs of Atg39 are crucial for Atg39 assembly in the NE and subsequent NE protrusion. These findings suggest that the nucleophagy receptor Atg39 plays pivotal roles in NE deformation during the generation of NDVs to be degraded by nucleophagy.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Keisuke Obara ◽  
Yoshinori Ohsumi

Eukaryotic cells can massively transport their own cytoplasmic contents into a lytic compartment, the vacuole/lysosome, for recycling through a conserved system called autophagy. The key process in autophagy is the sequestration of cytoplasmic contents within a double-membrane structure, the autophagosome. Autophagosome formation requires the elaborate cooperation of Atg (autophagy-related) proteins and lipid molecules. Phosphorylation of phosphatidylinositol (PtdIns) by a PtdIns 3-kinase, Vps34, is a key step in coordinating Atg proteins and lipid molecules. Vps34 forms two distinct protein complexes, only one of which is involved in generating autophagic membranes. Upon induction of autophagy, PtdIns(3)P, the enzymatic product of PtdIns 3-kinase, is massively transported into the lumen of the vacuoleviaautophagy. PtdIns(3)Pis enriched on the inner membrane of the autophagosome. PtdIns(3)Precruits the Atg18−Atg2 complex and presumably other Atg proteins to autophagic membranes, thereby coordinating lipid molecules and Atg proteins.


2012 ◽  
Vol 197 (5) ◽  
pp. 659-675 ◽  
Author(s):  
Andrea Longatti ◽  
Christopher A. Lamb ◽  
Minoo Razi ◽  
Shin-ichiro Yoshimura ◽  
Francis A. Barr ◽  
...  

Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain–containing Rab guanosine triphosphatase–activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)–positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.


2011 ◽  
Vol 192 (5) ◽  
pp. 839-853 ◽  
Author(s):  
Takashi Itoh ◽  
Eiko Kanno ◽  
Takefumi Uemura ◽  
Satoshi Waguri ◽  
Mitsunori Fukuda

Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase–activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue–binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.


Sign in / Sign up

Export Citation Format

Share Document