scholarly journals Characterization of Multiple Multivesicular Body Sorting Determinants within Sna3: A Role for the Ubiquitin Ligase Rsp5

2007 ◽  
Vol 18 (2) ◽  
pp. 707-720 ◽  
Author(s):  
Andrea J. Oestreich ◽  
Mariam Aboian ◽  
Jacqueline Lee ◽  
Ishara Azmi ◽  
Johanna Payne ◽  
...  

A subset of proteins that transit the endosomal system are directed into the intralumenal vesicles of multivesicular bodies (MVBs). MVB formation is critical for a variety of cellular functions including receptor down-regulation, viral budding, antigen presentation, and the generation of lysosome-related organelles. Entry of transmembrane proteins into the intralumenal vesicles of a MVB is a highly regulated process that is positively modulated by covalent modification of cargoes with ubiquitin. To identify additional MVB sorting signals, we examined the previously described ubiquitination-independent MVB cargo Sna3. Although Sna3 ubiquitination is not essential, Sna3 MVB sorting is positively modulated by its ubiquitination. Examination of MVB sorting determinants within a form of Sna3 lacking all lysine residues identified two critical regions: an amino-terminal tyrosine-containing region and a carboxyl-terminal PPAY motif. This PPAY motif interacts with the WW domains of the ubiquitin ligase Rsp5, and mutations in either the WW or, surprisingly, the HECT domains of Rsp5 negatively impacted MVB targeting of lysine-minus Sna3. These data indicate that Rsp5 function is required for MVB targeting of Sna3 in a capacity beyond cargo ubiquitination. These results uncover a series of determinants impacting Sna3 MVB sorting, including unexpected roles for Rsp5.

2008 ◽  
Vol 19 (9) ◽  
pp. 3616-3624 ◽  
Author(s):  
Fuqiang Geng ◽  
William P. Tansey

Covalent modification of histones by ubiquitylation is a prominent epigenetic mark that features in a variety of chromatin-based events such as histone methylation, gene silencing, and repair of DNA damage. The prototypical example of histone ubiquitylation is that of histone H2B in Saccharomyces cerevisiae. In this case, attachment of ubiquitin to lysine 123 (K123) of H2B is important for regulation of both active and transcriptionally silent genes and participates in trans to signal methylation of histone H3. It is generally assumed that H2B is monoubiquitylated at K123 and that it is this single ubiquitin moiety that influences H2B function. To determine whether this assumption is correct, we have re-examined the ubiquitylation status of endogenous H2B in yeast. We find that, contrary to expectations, H2B is extensively polyubiquitylated. Polyubiquitylation of H2B appears to occur within the context of chromatin and is not associated with H2B destruction. There are at least two distinct modes of H2B polyubiquitylation: one that occurs at K123 and depends on the Rad6–Bre1 ubiquitylation machinery and another that occurs on multiple lysine residues and is catalyzed by an uncharacterized ubiquitin ligase(s). Interestingly, these ubiquitylation events are under the influence of different combinations of ubiquitin-specific proteases, suggesting that they have distinct biological functions. These results raise the possibility that some of the biological effects of ubiquitylation of H2B are exerted via ubiquitin chains, rather than a single ubiquitin group.


2007 ◽  
Vol 18 (7) ◽  
pp. 2429-2440 ◽  
Author(s):  
James A. Sullivan ◽  
Michael J. Lewis ◽  
Elina Nikko ◽  
Hugh R.B. Pelham

Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain “PY” motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY–WW interactions is required for the ubiquitination of Smf1.


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4413
Author(s):  
Jung-Hoon Lee ◽  
Daniel Bollschweiler ◽  
Tillman Schäfer ◽  
Robert Huber

The chromatin-modifying histone deacetylases (HDACs) remove acetyl groups from acetyl-lysine residues in histone amino-terminal tails, thereby mediating transcriptional repression. Structural makeup and mechanisms by which multisubunit HDAC complexes recognize nucleosomes remain elusive. Our cryo–electron microscopy structures of the yeast class II HDAC ensembles show that the HDAC protomer comprises a triangle-shaped assembly of stoichiometry Hda12-Hda2-Hda3, in which the active sites of the Hda1 dimer are freely accessible. We also observe a tetramer of protomers, where the nucleosome binding modules are inaccessible. Structural analysis of the nucleosome-bound complexes indicates how positioning of Hda1 adjacent to histone H2B affords HDAC catalysis. Moreover, it reveals how an intricate network of multiple contacts between a dimer of protomers and the nucleosome creates a platform for expansion of the HDAC activities. Our study provides comprehensive insight into the structural plasticity of the HDAC complex and its functional mechanism of chromatin modification.


1990 ◽  
Vol 96 (2) ◽  
pp. 335-346
Author(s):  
B.M. Turner ◽  
L. Franchi ◽  
H. Wallace

The four histones of the nucleosome core particle are all subject to enzyme-catalysed, post-translational acetylation at defined lysine residues in their amino-terminal domains. Much circumstantial evidence suggests a role for this process in modifying chromatin structure and function, but detailed mechanisms have not been defined. To facilitate studies on the functional significance of histone acetylation, we have prepared antibodies specific for the acetylated isoforms of histone H4. Because of the extreme evolutionary conservation of H4, these antisera can be applied to a wide variety of organisms and experimental systems. In the present study we have used polytene chromosomes from the salivary glands of larvae of the midge Chironomus to examine the distribution of acetylated H4 in interphase chromatin. By indirect immunofluorescence, antisera to acetylated H4 labeled the four Chironomus chromosomes with reproducible patterns of sharply defined, fluorescent bands. An antiserum to non-acetylated H4 gave a completely different, more-diffuse labelling pattern. Thus, there are defined regions, or islands, in the interphase genome that are enriched in acetylated H4. Double-labelling experiments with two antisera specific for H4 molecules acetylated at different sites, showed that each antiserum gave the same banding pattern. Immunolabelling patterns were not dependent on the pattern of phase-dense bands characteristic of these chromosomes; strongly labelled regions could correspond to phase-dense bands (i.e. condensed chromatin), to interbands or, frequently, to band-interband junctions. Immunogold electron microscopy confirmed the immunofluorescence results and showed further that regions of relatively high labelling could be either transcriptionally active or quiescent, as judged by the presence or absence of ribonucleoprotein particles. Two rapidly transcribed genes on chromosome 4 of Chironomus form characteristic ‘puffs’, the Balbiani rings BRb and BRc. The antiserum to non-acetylated H4 gave diffuse labelling throughout these puffs, demonstrating the continued presence of this histone in these transcriptionally active regions. Antisera to acetylated H4 strongly labelled the boundaries of BRb and BRc, and revealed clearly defined islands of increased H4 acetylation just within the expanded chromatin of the puffs. Labelling within the central region of each puff was much less intense. A similar pattern was observed in puffs on other chromosomes. Thus, increased H4 acetylation is not found throughout actively transcribed chromatin but occurs only at defined sites, possibly in the non-transcribed flanking regions. H4 acetylation is clearly not required for the passage of RNA polymerase through the nucleosome and we speculate that its role may be to facilitate the binding to DNA of polymerases and other proteins prior to the onset of transcription and possibly replication.


Open Biology ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190147 ◽  
Author(s):  
Amie J. McClellan ◽  
Sophie Heiden Laugesen ◽  
Lars Ellgaard

Protein ubiquitination is of great cellular importance through its central role in processes such as degradation, DNA repair, endocytosis and inflammation. Canonical ubiquitination takes place on lysine residues, but in the past 15 years non-lysine ubiquitination on serine, threonine and cysteine has been firmly established. With the emerging importance of non-lysine ubiquitination, it is crucial to identify the responsible molecular machinery and understand the mechanistic basis for non-lysine ubiquitination. Here, we first provide an overview of the literature that has documented non-lysine ubiquitination. Informed by these examples, we then discuss the molecular mechanisms and cellular implications of non-lysine ubiquitination, and conclude by outlining open questions and future perspectives in the field.


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. eaau1330 ◽  
Author(s):  
Andrew Sandstrom ◽  
Patrick S. Mitchell ◽  
Lisa Goers ◽  
Edward W. Mu ◽  
Cammie F. Lesser ◽  
...  

Inflammasomes are multiprotein platforms that initiate innate immunity by recruitment and activation of caspase-1. The NLRP1B inflammasome is activated upon direct cleavage by the anthrax lethal toxin protease. However, the mechanism by which cleavage results in NLRP1B activation is unknown. In this study, we find that cleavage results in proteasome-mediated degradation of the amino-terminal domains of NLRP1B, liberating a carboxyl-terminal fragment that is a potent caspase-1 activator. Proteasome-mediated degradation of NLRP1B is both necessary and sufficient for NLRP1B activation. Consistent with our functional degradation model, we identify IpaH7.8, aShigella flexneriubiquitin ligase secreted effector, as an enzyme that induces NLRP1B degradation and activation. Our results provide a unified mechanism for NLRP1B activation by diverse pathogen-encoded enzymatic activities.


2008 ◽  
Vol 10 (8) ◽  
pp. 994-1002 ◽  
Author(s):  
Kefeng Lu ◽  
Xiushan Yin ◽  
Tujun Weng ◽  
Shenli Xi ◽  
Li Li ◽  
...  
Keyword(s):  

2010 ◽  
Vol 30 (17) ◽  
pp. 4120-4133 ◽  
Author(s):  
Dong Hyun Kim ◽  
Varija N. Budhavarapu ◽  
Carlos R. Herrera ◽  
Hyung Wook Nam ◽  
Yu Sam Kim ◽  
...  

ABSTRACT During DNA polymerase switching, the Xenopus laevis Cip/Kip-type cyclin-dependent kinase inhibitor Xic1 associates with trimeric proliferating cell nuclear antigen (PCNA) and is recruited to chromatin, where it is ubiquitinated and degraded. In this study, we show that the predominant E3 for Xic1 in the egg is the Cul4-DDB1-XCdt2 (Xenopus Cdt2) (CRL4Cdt2) ubiquitin ligase. The addition of full-length XCdt2 to the Xenopus extract promotes Xic1 turnover, while the N-terminal domain of XCdt2 (residues 1 to 400) cannot promote Xic1 turnover, despite its ability to bind both Xic1 and DDB1. Further analysis demonstrated that XCdt2 binds directly to PCNA through its C-terminal domain (residues 401 to 710), indicating that this interaction is important for promoting Xic1 turnover. We also identify the cis-acting sequences required for Xic1 binding to Cdt2. Xic1 binds to Cdt2 through two domains (residues 161 to 170 and 179 to 190) directly flanking the Xic1 PCNA binding domain (PIP box) but does not require PIP box sequences (residues 171 to 178). Similarly, human p21 binds to human Cdt2 through residues 156 to 161, adjacent to the p21 PIP box. In addition, we identify five lysine residues (K180, K182, K183, K188, and K193) immediately downstream of the Xic1 PIP box and within the second Cdt2 binding domain as critical sites for Xic1 ubiquitination. Our studies suggest a model in which both the CRL4Cdt2 E3- and PIP box-containing substrates, like Xic1, are recruited to chromatin through independent direct associations with PCNA.


2019 ◽  
Vol 20 (S2) ◽  
Author(s):  
Abel Chandra ◽  
Alok Sharma ◽  
Abdollah Dehzangi ◽  
Daichi Shigemizu ◽  
Tatsuhiko Tsunoda

Abstract Background The biological process known as post-translational modification (PTM) is a condition whereby proteomes are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However, the computational techniques proposed so far hold limitations to correctly predict this covalent modification. Results We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision, accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253, 0.9193, 0.8330, 0.9306, respectively. Conclusions The proposed predictor, based on the feature of evolutionary information and support vector machine classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine residues when compared against the existing predictors. The data and software of this work can be acquired from https://github.com/abelavit/Bigram-PGK.


Sign in / Sign up

Export Citation Format

Share Document