scholarly journals Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer

2007 ◽  
Vol 18 (11) ◽  
pp. 4245-4260 ◽  
Author(s):  
Annika M. Sääf ◽  
Jennifer M. Halbleib ◽  
Xin Chen ◽  
Siu Tsan Yuen ◽  
Suet Yi Leung ◽  
...  

Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2 .

2007 ◽  
Vol 123 ◽  
pp. S169
Author(s):  
Ken Flanagan ◽  
Jennine Cornelius ◽  
Zora Modrusan ◽  
Lian Mo ◽  
Arvind Chavali ◽  
...  

Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2006 ◽  
Vol 18 (2) ◽  
pp. 142
Author(s):  
N. Ruddock ◽  
K. Wilson ◽  
M. Cooney ◽  
R. Tecirlioglu ◽  
V. Hall ◽  
...  

Developmental pathways in the mammalian embryo are profoundly influenced by the epigenetic interaction of the environment and the genome. Loss of epigenetic control has been implicated in aberrant gene expression and altered imprinting patterns with consequence to the physiology and viability of the conceptus. Bovine somatic cell nuclear transfer (SCNT) is contingent on in vitro culture, and both SCNT and culture conditions are known to induce changes in embryonic gene expression patterns. Using these experimental models, this study compared gene expression of Day 7 cloned blastocysts created from three different SCNT protocols using the same cell line, with Day 7 in vivo blastocysts to elucidate mechanisms responsible for variations in phenotypic outcomes. SCNT methods included: (1) traditional SCNT by subzonal injection (SI); (2) handmade cloning (HMC); and (3) modified serial nuclear transfer (SNT), developed within the group. Four imprinted genes (Grb10, Ndn, Nnat, and Ube3a), four chromatin remodeling genes (Cbx1, Cbx3, Smarca4, and Smarcb1) and two genes implicated in polycystic liver disease (Prkcsh and Sec63) were analyzed in single blastocysts from each treatment (n = 5). All blastocysts expressed Actin, Oct-4 and Ifn-tau. All genes were sequence verified. Several genes were expressed ubiquitously across all groups, including Ndn, Ube3a, Cbx1, Cbx3, and Smarcb1. Interestingly, Grb10 was not expressed in two HMCs and one SNT blastocyst. Nnat was weakly expressed in one in vivo blastocyst and in the majority of cloned blastocysts in all groups. Prkcsh and Sec63 were expressed in all but one HMC blastocyst. While gene expression patterns were mostly maintained following SCNT, the imprinted genes Nnat and Grb10 showed instances of differential or abnormal expression in SCNT embryos. The chromatin remodeling genes were maintained in all SCNT treatments. Prkcsh and Sec63 were both absent in one HMC blastocyst, with implications for liver dysfunction, a condition previously reported in abnormal cloned offspring. The variable mRNA expression following SCNT provides an insight into genetic and environmental factors controlling implantation, placentation, organ formation, and fetal growth.


2003 ◽  
Vol 31 (2) ◽  
pp. 291-303 ◽  
Author(s):  
JM Weitzel ◽  
S Hamann ◽  
M Jauk ◽  
M Lacey ◽  
A Filbry ◽  
...  

Thyroid hormone (T3) is essential for normal development, differentiation and metabolic balance. We have performed DNA microarray experiments using hepatic RNA from hypothyroid and T3-treated hypothyroid rats in order to characterize T3-induced gene expression patterns after various time points (6, 24 and 48 h after the administration of the hormone). Sixty-two of 4608 different genes displayed a reproducible T3-response, and cluster analysis divided these differentially regulated genes into six expression patterns. Thirty-six genes were not significantly regulated within the first 24 h. Transient transfection experiments of eight late-induced gene promoters failed to detect a thyroid hormone response element within their regulatory elements, suggesting an indirect activation mechanism(s). In search for an intermediate factor of T3 action, we examined whether various rather ubiquitous transcription factors, peroxisome proliferator-activated receptors (PPARs) and coactivators of the PPARgamma coactivator 1 family (PGC-1) are regulated by T3. Only PPARgamma and PERC/PGC-1beta exhibit a significant T3-response within the first 6 h after treatment, identifying these factors as candidate components for mediating the late-induced expression pattern. Regulation of early-induced genes within the first 6 h after administration of T3 on transcript levels correlates with altered protein levels after 24 and 48 h in vivo.


Author(s):  
Dina Nitiša ◽  
Nityanand Jain ◽  
Arvīds Irmejs ◽  
Valdis Pirsko ◽  
Inese Čakstiņa

AbstractBreast cancer (BC) is the most common cause of cancer-related deaths among women in Europe and worldwide. Adherent (2D) cell cultures have been the routine in vitro model system employed in preclinical BC research for the last half-century. Over the past decade, new protocols have been developed allowing patient-derived three-dimensional organoid (3D) cell culture development from a range of solid tumours, including BC. These 3D models offer a promise of closer resemblance to the native tumour than the 2D cultures. To test the assumption that an in vitro 3D BC model system provides increased faithfulness to the molecular processes happening in vivo, as compared to 2D BC cultures, post-operational material from three BC patients was used to simultaneously develop 2D and 3D cultures in vitro. When analysed by quantitative polymerase chain reaction (PCR), the gene expression patterns of the cells from 3D cultures resembled the original tissues, while the gene expression patterns of the conventional 2D cultures were more distant.


Sign in / Sign up

Export Citation Format

Share Document