scholarly journals Calcium Regulation of Myogenesis by Differential Calmodulin Inhibition of Basic Helix-Loop-Helix Transcription Factors

2008 ◽  
Vol 19 (6) ◽  
pp. 2509-2519 ◽  
Author(s):  
Jannek Hauser ◽  
Juha Saarikettu ◽  
Thomas Grundström

The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to Ca2+-loaded calmodulin (CaM) inhibit MyoD-initiated myogenic conversion of transfected fibroblasts. Ca2+ channel blockers reduce, and Ca2+ stimulation increases, transcription by coexpressed MyoD and wild-type E12 but not CaM-resistant mutant E12. Furthermore, CaM-resistant E12 gives lower MyoD binding and higher E12 binding to a MyoD-responsive promoter in vivo and cannot rescue myogenic differentiation that has been inhibited by siRNA against E12 and E47. Our data support the concept that Ca2+-loaded CaM enables myogenesis by inhibiting DNA binding of E-protein homodimers, thereby promoting occupancy of myogenic bHLH protein/E-protein heterodimers on promoters of myogenic target genes.

2007 ◽  
Vol 6 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Setsu Endoh-Yamagami ◽  
Kiyoshi Hirakawa ◽  
Daisuke Morioka ◽  
Ryouichi Fukuda ◽  
Akinori Ohta

ABSTRACT The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes.


1997 ◽  
Vol 17 (11) ◽  
pp. 6563-6573 ◽  
Author(s):  
Y Hamamori ◽  
H Y Wu ◽  
V Sartorelli ◽  
L Kedes

In vertebrates, the basic helix-loop-helix (bHLH) protein Twist may be involved in the negative regulation of cellular determination and in the differentiation of several lineages, including myogenesis, osteogenesis, and neurogenesis. Although it has been shown that mouse twist (M-Twist) (i) sequesters E proteins, thus preventing formation of myogenic E protein-MyoD complexes and (ii) inhibits the MEF2 transcription factor, a cofactor of myogenic bHLH proteins, overexpression of E proteins and MEF2 failed to rescue the inhibitory effects of M-Twist on MyoD. We report here that M-Twist physically interacts with the myogenic bHLH proteins in vitro and in vivo and that this interaction is required for the inhibition of MyoD by M-Twist. In contrast to the conventional HLH-HLH domain interaction formed in the MyoD/E12 heterodimer, this novel type of interaction uses the basic domains of the two proteins. While the MyoD HLH domain without the basic domain failed to interact with M-Twist, a MyoD peptide containing only the basic and helix 1 regions was sufficient to interact with M-Twist, suggesting that the basic domain contacts M-Twist. The replacement of three arginine residues by alanines in the M-Twist basic domain was sufficient to abolish both the binding and inhibition of MyoD by M-Twist, while the domain retained other M-Twist functions such as heterodimerization with an E protein and inhibition of MEF2 transactivation. These findings demonstrate that M-Twist interacts with MyoD through the basic domains, thereby inhibiting MyoD.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


2000 ◽  
Vol 20 (13) ◽  
pp. 4826-4837 ◽  
Author(s):  
Gino Poulin ◽  
Mélanie Lebel ◽  
Michel Chamberland ◽  
Francois W. Paradis ◽  
Jacques Drouin

ABSTRACT Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis.


2005 ◽  
Vol 25 (20) ◽  
pp. 8960-8970 ◽  
Author(s):  
Andreas Fischer ◽  
Jürgen Klattig ◽  
Burkhard Kneitz ◽  
Holger Diez ◽  
Manfred Maier ◽  
...  

ABSTRACT The Hey basic helix-loop-helix transcription factors are downstream effectors of Notch signaling in the cardiovascular system. Mice lacking Hey2 develop cardiac hypertrophy, often associated with congenital heart defects, whereas combined Hey1/Hey2 deficiency leads to severe vascular defects and embryonic lethality around embryonic day E9.5. The molecular basis of these disorders is poorly understood, however, since target genes of Hey transcription factors in the affected tissues remain elusive. To identify genes regulated by Hey factors we have generated a conditional Hey1 knockout mouse. This strain was used to generate paired Hey2- and Hey1/2-deficient embryonic stem cell lines. Comparison of these cell lines by microarray analysis identified GATA4 and GATA6 as differentially expressed genes. Loss of Hey1/2 leads to elevated GATA4/6 and ANF mRNA levels in embryoid bodies, while forced expression of Hey factors strongly represses expression of the GATA4 and GATA6 promoter in various cell lines. In addition, the promoter activity of the GATA4/6 target gene ANF was inhibited by Hey1, Hey2, and HeyL. Protein interaction and mutation analyses suggest that repression is due to direct binding of Hey proteins to GATA4 and GATA6, blocking their transcriptional activity. In Hey2-deficient fetal hearts we observed elevated mRNA levels of ANF and CARP. Expression of ANF and Hey2 is normally restricted to the trabecular and compact myocardial layer, respectively. Intriguingly, loss of Hey2 leads to ectopic ANF expression in the compact layer, suggesting a direct role for Hey2 in limiting ANF expression in this cardiac compartment.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1292
Author(s):  
Yu Chen ◽  
Peihuang Zhu ◽  
Fan Wu ◽  
Xiaofeng Wang ◽  
Jinfeng Zhang ◽  
...  

The basic helix-loop-helix (bHLH) protein transcription factor family is the most widely distributed transcription factor family in eukaryotes. Members of this family play important roles in secondary metabolic biosynthesis, signal transduction, and plant resistance. Research on the bHLH family in animals is more extensive than that in plants, and members of the family in plants are classified according to the classification criteria for those in animals. To date, no research on the bHLH gene family in Pinus massoniana (Masson pine) has been reported. In this study, we identified 88 bHLH genes from four transcriptomes of Masson pine and performed bioinformatics analysis. These genes were divided into 10 groups in total. RT-PCR analysis revealed that the expression levels of the six genes increased under abiotic stress and hormone treatments. These findings will facilitate further studies on the functions of bHLH transcription factors.


2007 ◽  
Vol 27 (22) ◽  
pp. 7839-7847 ◽  
Author(s):  
Subir K. Ray ◽  
Andrew B. Leiter

ABSTRACT The basic helix-loop-helix transcription factor NeuroD1 is required for late events in neuronal differentiation, for maturation of pancreatic β cells, and for terminal differentiation of enteroendocrine cells expressing the hormone secretin. NeuroD1-null mice demonstrated that this protein is essential for expression of the secretin gene in the murine intestine, and yet it is a relatively weak transcriptional activator by itself. The present study shows that Sp1 and NeuroD1 synergistically activate transcription of the secretin gene. NeuroD1, but not its widely expressed dimerization partner E12, physically interacts with the C-terminal 167 amino acids of Sp1, which include its DNA binding zinc fingers. NeuroD1 stabilizes Sp1 DNA binding to an adjacent Sp1 binding site on the promoter to generate a higher-order DNA-protein complex containing both proteins and facilitates Sp1 occupancy of the secretin promoter in vivo. NeuroD-dependent transcription of the genes encoding the hormones insulin and proopiomelanocortin is potentiated by lineage-specific homeodomain proteins. The stabilization of binding of the widely expressed transcription factor Sp1 to the secretin promoter by NeuroD represents a distinct mechanism from other NeuroD target genes for increasing NeuroD-dependent transcription.


Sign in / Sign up

Export Citation Format

Share Document