scholarly journals Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression

2012 ◽  
Vol 23 (16) ◽  
pp. 3229-3239 ◽  
Author(s):  
Takao Yasuda ◽  
Chika Saegusa ◽  
Sachiko Kamakura ◽  
Hideki Sumimoto ◽  
Mitsunori Fukuda

Most cells in tissues are polarized and usually have two distinct plasma membrane domains—an apical membrane and a basolateral membrane, which are the result of polarized trafficking of proteins and lipids. However, the mechanism underlying the cell polarization is not fully understood. In this study, we investigated the involvement of synaptotagmin-like protein 2-a (Slp2-a), an effector molecule for the small GTPase Rab27, in polarized trafficking by using Madin–Darby canine kidney II cells as a model of polarized cells. The results show that the level of Slp2-a expression in MDCK II cells increases greatly as the cells become polarized and that its expression is specifically localized at the apical membrane. The results also reveal that Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in a Rab27A-dependent manner. In addition, ezrin, a downstream target of podocalyxin, and ERK1/2 are activated in Slp2-a–knockdown cells, and their activation results in a dramatic reduction in the amount of the tight junction protein claudin-2. Because both Slp2-a and claudin-2 are highly expressed in mouse renal proximal tubules, Slp2-a is likely to regulate claudin-2 expression through trafficking of podocalyxin to the apical surface in mouse renal tubule epithelial cells.

2013 ◽  
Vol 200 (5) ◽  
pp. 635-650 ◽  
Author(s):  
Junya Hayase ◽  
Sachiko Kamakura ◽  
Yuko Iwakiri ◽  
Yoshihiro Yamaguchi ◽  
Tomoko Izaki ◽  
...  

Formation of apico-basal polarity in epithelial cells is crucial for both morphogenesis (e.g., cyst formation) and function (e.g., tight junction development). Atypical protein kinase C (aPKC), complexed with Par6, is considered to translocate to the apical membrane and function in epithelial cell polarization. However, the mechanism for translocation of the Par6–aPKC complex has remained largely unknown. Here, we show that the WD40 protein Morg1 (mitogen-activated protein kinase organizer 1) directly binds to Par6 and thus facilitates apical targeting of Par6–aPKC in Madin-Darby canine kidney epithelial cells. Morg1 also interacts with the apical transmembrane protein Crumbs3 to promote Par6–aPKC binding to Crumbs3, which is reinforced with the apically localized small GTPase Cdc42. Depletion of Morg1 disrupted both tight junction development in monolayer culture and cyst formation in three-dimensional culture; apico-basal polarity was notably restored by forced targeting of aPKC to the apical surface. Thus, Par6–aPKC recruitment to the premature apical membrane appears to be required for definition of apical identity of epithelial cells.


1992 ◽  
Vol 103 (3) ◽  
pp. 677-687 ◽  
Author(s):  
G.K. Ojakian ◽  
R. Schwimmer

Previous experiments on MDCK cells have demonstrated that the polarized appearance of a 135 kDa glycoprotein (gp135) on the apical plasma membrane can occur through the insertion of both newly synthesized gp135 as well as a pre-existing gp135 intracellular pool. In this study, anticytoskeletal drugs were utilized to determine the role of the cytoskeleton in the polarized delivery of gp135. Colchicine and nocodazole produced a 15–20% inhibition in the apical surface accumulation of newly synthesized gp135 and inhibited the appearance of the gp135 pool by approximately 33%, while cytochalasin D had no affect on the apical accumulation of either newly synthesized gp135 or the gp135 pool. These results indicate that microtubules, but not microfilaments, are involved in the intracellular targeting of gp135. Quantitative immunogold electron microscopy of nocodazole-treated cells demonstrated that gp135 was not mistargeted to the basolateral membrane, suggesting the possibility that some vesicles containing gp135 did not fuse with the apical membrane and remained in the cells. These experiments demonstrate that microtubules are an important component of gp135 insertion into the apical membrane. They also suggest that gp135 resides within vesicles which have an apical membrane recognition signal and cannot fuse with the basolateral membrane. The possibility that these data, and those of others, could support a hypothesis for the presence of two constitutive apical transport pathways is discussed.


1988 ◽  
Vol 255 (6) ◽  
pp. C745-C753 ◽  
Author(s):  
C. Lasheras ◽  
J. A. Scott ◽  
C. A. Rabito

The present study analyzed the changes in Na+-dependent sugar transport and transepithelial electrical resistance as LLC-PK1 cells reorganize into epithelial membranes. Sugar influx increased to reach a maximum 9 h after plating. The increase in the transepithelial electrical resistance, however, showed a significant delay, reaching steady state 15 h after plating. No changes in the electrochemical Na+ gradient were observed during the reorganization of the epithelial membranes. Kinetic analysis and [3H]phlorizin-binding studies showed that the increase in sugar influx resulted from an increase in the number of carriers. Unidirectional sugar influx measurements indicated that the sugar transporters were primarily located at the apical surface of the epithelial cells. These observations are consistent with the hypothesis that the sorting of native proteins occurs intracellularly before their insertion in the apical membrane, or as an alternative that they are randomly inserted, but then immediately sorted such as any carrier could be detected in the basolateral side during the reorganization process. In addition, the results suggest that the functional development of the apical membrane may occur before the complete sealing of the intercellular space during the development of the occluding junctions. Furthermore, development of the sugar transport system and occluding junctions was inhibited by cycloheximide and puromycin but not by actinomycin D, suggesting that the expression of epithelial cell polarization is probably a posttranslational event in the protein synthesis.


2000 ◽  
Vol 149 (7) ◽  
pp. 1473-1484 ◽  
Author(s):  
Pamela J. Plant ◽  
Frank Lafont ◽  
Sandra Lecat ◽  
Paul Verkade ◽  
Kai Simons ◽  
...  

Nedd4 is a ubiquitin protein ligase (E3) containing a C2 domain, three or four WW domains, and a ubiquitin ligase HECT domain. We have shown previously that the C2 domain of Nedd4 is responsible for its Ca2+-dependent targeting to the plasma membrane, particularly the apical region of epithelial MDCK cells. To investigate this apical preference, we searched for Nedd4-C2 domain-interacting proteins that might be involved in targeting Nedd4 to the apical surface. Using immobilized Nedd4-C2 domain to trap interacting proteins from MDCK cell lysate, we isolated, in the presence of Ca2+, a ∼35–40-kD protein that we identified as annexin XIII using mass spectrometry. Annexin XIII has two known isoforms, a and b, that are apically localized, although XIIIa is also found in the basolateral compartment. In vitro binding and coprecipitation experiments showed that the Nedd4-C2 domain interacts with both annexin XIIIa and b in the presence of Ca2+, and the interaction is direct and optimal at 1 μM Ca2+. Immunofluorescence and immunogold electron microscopy revealed colocalization of Nedd4 and annexin XIIIb in apical carriers and at the apical plasma membrane. Moreover, we show that Nedd4 associates with raft lipid microdomains in a Ca2+-dependent manner, as determined by detergent extraction and floatation assays. These results suggest that the apical membrane localization of Nedd4 is mediated by an association of its C2 domain with the apically targeted annexin XIIIb.


2015 ◽  
Vol 210 (7) ◽  
pp. 1055-1063 ◽  
Author(s):  
Lucas J.M. Bruurs ◽  
Lisa Donker ◽  
Susan Zwakenberg ◽  
Fried J. Zwartkruis ◽  
Harry Begthel ◽  
...  

During yeast cell polarization localization of the small GTPase, cell division control protein 42 homologue (Cdc42) is clustered to ensure the formation of a single bud. Here we show that the disease-associated flippase ATPase class I type 8b member 1 (ATP8B1) enables Cdc42 clustering during enterocyte polarization. Loss of this regulation results in increased apical membrane size with scattered apical recycling endosomes and permits the formation of more than one apical domain, resembling the singularity defect observed in yeast. Mechanistically, we show that to become apically clustered, Cdc42 requires the interaction between its polybasic region and negatively charged membrane lipids provided by ATP8B1. Disturbing this interaction, either by ATP8B1 depletion or by introduction of a Cdc42 mutant defective in lipid binding, increases Cdc42 mobility and results in apical membrane enlargement. Re-establishing Cdc42 clustering, by tethering it to the apical membrane or lowering its diffusion, restores normal apical membrane size in ATP8B1-depleted cells. We therefore conclude that singularity regulation by Cdc42 is conserved between yeast and human and that this regulation is required to maintain healthy tissue architecture.


2004 ◽  
Vol 287 (5) ◽  
pp. C1173-C1183 ◽  
Author(s):  
John Cuppoletti ◽  
Danuta H. Malinowska ◽  
Kirti P. Tewari ◽  
Qiu-ju Li ◽  
Ann M. Sherry ◽  
...  

The purpose of this study was to determine the mechanism of action of SPI-0211 (lubiprostone), a novel bicyclic fatty acid in development for the treatment of bowel dysfunction. Adult rabbit intestine was shown to contain mRNA for ClC-2 using RT-PCR, Northern blot analysis, and in situ hybridization. T84 cells grown to confluence on permeable supports were shown to express ClC-2 channel protein in the apical membrane. SPI-0211 increased electrogenic Cl− transport across the apical membrane of T84 cells, with an EC50 of ∼18 nM measured by short-circuit current ( Isc) after permeabilization of the basolateral membrane with nystatin. SPI-0211 effects on Cl− currents were also measured by whole cell patch clamp using the human embryonic kidney (HEK)-293 cell line stably transfected with either recombinant human ClC-2 or recombinant human cystic fibrosis transmembrane regulator (CFTR). In these studies, SPI-0211 activated ClC-2 Cl− currents in a concentration-dependent manner, with an EC50 of ∼17 nM, and had no effect in nontransfected HEK-293 cells. In contrast, SPI-0211 had no effect on CFTR Cl− channel currents measured in CFTR-transfected HEK-293 cells. Activation of ClC-2 by SPI-0211 was independent of PKA. Together, these studies demonstrate that SPI-0211 is a potent activator of ClC-2 Cl− channels and suggest a physiologically relevant role for ClC-2 Cl− channels in intestinal Cl− transport after SPI-0211 administration.


2009 ◽  
Vol 20 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Weiqun Yu ◽  
Puneet Khandelwal ◽  
Gerard Apodaca

Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K+ channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell.


1986 ◽  
Vol 251 (3) ◽  
pp. F475-F484 ◽  
Author(s):  
J. M. Sands ◽  
M. A. Knepper ◽  
K. R. Spring

The renal papillary surface epithelium is exposed to pelvic urine on its apical surface and to inner medullary interstitium on its basolateral surface. To investigate transport in this epithelium, we dissected it free from the renal papilla of rabbits and mounted it in a chamber that allowed both sides to be bathed independently. Cell volume was measured at 25 degrees C utilizing computerized quantitative microscopy. Addition of ouabain (10(-4) M) to the basolateral solution induced a 20% volume increase. This volume increase was completely inhibited by the removal of apical bath NaCl, Na+, K+, or Cl- but not by the removal of urea. Bumetanide, down to 10(-9) M in the apical bath, completely inhibited the ouabain-induced swelling. Changes in apical bath osmolality, resulting from addition or removal of NaCl, caused cell volume changes that were greater than could be accounted for by osmotic water flow alone. This hyperresponse was blocked by bumetanide and was stimulated by vasopressin (10(-8) M). These observations are consistent with the presence of Na-K-ATPase in the basolateral membrane and a bumetanide-sensitive, vasopressin-responsive Na-K-Cl co-transporter in the apical membrane.


2020 ◽  
Vol 219 (4) ◽  
Author(s):  
Daniel S. Levic ◽  
Sean Ryan ◽  
Lindsay Marjoram ◽  
Jamie Honeycutt ◽  
Jennifer Bagwell ◽  
...  

Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.


1998 ◽  
Vol 274 (6) ◽  
pp. R1824-R1828 ◽  
Author(s):  
Nancy J. Philp ◽  
Heeyong Yoon ◽  
Evelyn F. Grollman

The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier and regulates the movement of nutrients, water, and ions between the choroidal blood supply and the retina. The transport properties of the RPE maintain retinal adhesion and regulate the pH and osmolarity in the space surrounding the photoreceptor cell outer segments. In this report we identify two monocarboxylate transporters, MCT1 and MCT3, expressed in rat RPE. On the basis of Northern and Western blot analyses, MCT1 is expressed in both the neural retina and the RPE, whereas the expression of MCT3 is restricted to the RPE. Using indirect immunolocalization we show that the two transporters are polarized to distinct membrane domains. MCT1 antibody labels the apical surface and the apical processes of the RPE. A polyclonal antibody produced against the carboxy terminus of rat MCT3 labels only the basolateral membrane of the RPE. The demonstration of MCT1 on the apical membrane and MCT3 on the basal membrane identifies specific proteins involved in the discriminate and critical regulation of water and lactate transport from the retina to the choroid.


Sign in / Sign up

Export Citation Format

Share Document