scholarly journals The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies

2012 ◽  
Vol 23 (24) ◽  
pp. 4766-4777 ◽  
Author(s):  
Tyson Vonderfecht ◽  
Michael W. Cookson ◽  
Thomas H. Giddings ◽  
Christina Clarissa ◽  
Mark Winey

Centrins are a ubiquitous family of small Ca2+-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.

mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Westley Heydeck ◽  
Alexander J. Stemm-Wolf ◽  
Janin Knop ◽  
Christina C. Poh ◽  
Mark Winey

ABSTRACT Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.


2009 ◽  
Vol 20 (6) ◽  
pp. 1865-1877 ◽  
Author(s):  
Brady P. Culver ◽  
Janet B. Meehl ◽  
Thomas H. Giddings ◽  
Mark Winey

Cilia and flagella are structurally and functionally conserved organelles present in basal as well as higher eukaryotes. The assembly of cilia requires a microtubule based scaffold called a basal body. The ninefold symmetry characteristic of basal bodies and the structurally similar centriole is organized around a hub and spoke structure termed the cartwheel. To date, SAS-6 is one of the two clearly conserved components of the cartwheel. In some organisms, overexpression of SAS-6 causes the formation of supernumerary centrioles. We questioned whether the centriole assembly initiation capacity of SAS-6 is separate from or directly related to its structural role at the cartwheel. To address this question we used Tetrahymena thermophila, which expresses two SAS-6 homologues, TtSAS6a and TtSAS6b. Cells lacking either TtSAS6a or TtSAS6b are defective in new basal body assembly. TtSas6a localizes to all basal bodies equally, whereas TtSas6b is enriched at unciliated and assembling basal bodies. Interestingly, overexpression of TtSAS6b but not TtSAS6a, led to the assembly of clusters of new basal bodies in abnormal locations. Our data suggest a model where TtSAS6a and TtSAS6b have diverged such that TtSAS6a acts as a structural component of basal bodies, whereas TtSAS6b influences the location of new basal body assembly.


2018 ◽  
Vol 217 (7) ◽  
pp. 2365-2372 ◽  
Author(s):  
Jose Reina ◽  
Marco Gottardo ◽  
Maria G. Riparbelli ◽  
Salud Llamazares ◽  
Giuliano Callaini ◽  
...  

Centrobin homologues identified in different species localize on daughter centrioles. In Drosophila melanogaster sensory neurons, Centrobin (referred to as CNB in Drosophila) inhibits basal body function. These data open the question of CNB’s role in spermatocytes, where daughter and mother centrioles become basal bodies. In this study, we report that in these cells, CNB localizes equally to mother and daughter centrioles and is essential for C-tubules to attain the right position and remain attached to B-tubules as well as for centrioles to grow in length. CNB appears to be dispensable for meiosis, but flagellum development is severely compromised in Cnb mutant males. Remarkably, three N-terminal POLO phosphorylation sites that are critical for CNB function in neuroblasts are dispensable for spermatogenesis. Our results underpin the multifunctional nature of CNB that plays different roles in different cell types in Drosophila, and they identify CNB as an essential component for C-tubule assembly and flagellum development in Drosophila spermatogenesis.


2005 ◽  
Vol 16 (8) ◽  
pp. 3606-3619 ◽  
Author(s):  
Alexander J. Stemm-Wolf ◽  
Garry Morgan ◽  
Thomas H. Giddings ◽  
Erin A. White ◽  
Robb Marchione ◽  
...  

Centrins, small calcium binding EF-hand proteins, function in the duplication of a variety of microtubule organizing centers. These include centrioles in humans, basal bodies in green algae, and spindle pole bodies in yeast. The ciliate Tetrahymena thermophila contains at least four centrin genes as determined by sequence homology, and these have distinct localization and expression patterns. CEN1's role at the basal body was examined more closely. The Cen1 protein localizes primarily to two locations: one is the site at the base of the basal body where duplication is initiated. The other is the transition zone between the basal body and axoneme. CEN1 is an essential gene, the deletion of which results in the loss of basal bodies, which is likely due to defects in both basal body duplication and basal body maintenance. Analysis of the three other centrins indicates that two of them function at microtubule-rich structures unique to ciliates, whereas the fourth is not expressed under conditions examined in this study, although when artificially expressed it localizes to basal bodies. This study provides evidence that in addition to its previously known function in the duplication of basal bodies, centrin is also important for the integrity of these organelles.


2009 ◽  
Vol 20 (3) ◽  
pp. 904-914 ◽  
Author(s):  
Chad G. Pearson ◽  
Thomas H. Giddings ◽  
Mark Winey

Basal bodies organize cilia that are responsible for both mechanical beating and sensation. Nascent basal body assembly follows a series of well characterized morphological events; however, the proteins and their assembly dynamics for new basal body formation and function are not well understood. High-resolution light and electron microscopy studies were performed in Tetrahymena thermophila to determine how proteins assemble into the structure. We identify unique dynamics at basal bodies for each of the four proteins analyzed (α-tubulin, Spag6, centrin, and Sas6a). α-Tubulin incorporates only during new basal body assembly, Spag6 continuously exchanges at basal bodies, and centrin and Sas6a exhibit both of these patterns. Centrin loads and exchanges at the basal body distal end and stably incorporates during new basal body assembly at the nascent site of assembly and the microtubule cylinder. Conversely, both dynamic and stable populations of Sas6a are found only at a single site, the cartwheel. The bimodal dynamics found for centrin and Sas6a reveal unique protein assembly mechanisms at basal bodies that may reflect novel functions for these important basal body and centriolar proteins.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jenna L Wingfield ◽  
Ilaria Mengoni ◽  
Heather Bomberger ◽  
Yu-Yang Jiang ◽  
Jonathon D Walsh ◽  
...  

Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse back into the cell body. In contrast to this ‘open’ system, IFT-B proteins from retrograde trains reenter the pool and a portion is reused directly in anterograde trains indicating a ‘semi-open’ system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells. FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive release into the cilium upon completion.


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


1970 ◽  
Vol 6 (3) ◽  
pp. 679-700
Author(s):  
J. WOLFE

The oral apparatus of Tetrahymena pyriformis was isolated using a non-ionic detergent to disrupt the cell membrane. The mouth consists largely of basal bodies and microfilaments. Each basal body is attached to the mouth by a basal plate which is integrated into the meshwork of microfilaments that confers upon the oral apparatus its structural integrity. Each basal body is composed of 9 triplet microtubules. Two of the 3 tubules, subfibres ‘A’ and ‘B’ are composed of filamentous rows of globules with a spacing of 4.5nm. The third tubule, subfibre ‘C’, is only one-third the length of the basal body.


1978 ◽  
Vol 31 (1) ◽  
pp. 25-35
Author(s):  
M.A. Gillott ◽  
R.E. Triemer

The ultrastructure of mitosis in Euglena gracilis was investigated. At preprophase the nucleus migrates anteriorly and associates with the basal bodies. Flagella and basal bodies replicate at preprophase. Cells retain motility throughout division. The reservoir and the prophase nucleus elongate perpendicular to the incipient cleavage furrow. One basal body pair surrounded by a ribosome-free zone is found at each of the nuclear poles. The spindle forms within the intact nuclear envelope- Polar fenestrae are absent. At metaphase, the endosome is elongated from pole to pole, and chromosomes are loosely arranged in the equatorial region. Distinct, trilayered kinetochores are present. Spindle elongates as chromosomes migrate to the poles forming a dumb-bell shaped nucleus by telophase. Daughter nuclei are formed by constriction of the nuclear envelope. Cytokinesis is accomplished by furrowing. Cell division in Euglena is compared with that of certain other algae.


FEBS Letters ◽  
1991 ◽  
Vol 282 (1) ◽  
pp. 175-177 ◽  
Author(s):  
Georgy Ya. Bakalkin ◽  
Dmitry Ponomariev ◽  
Raphik A. Sarkisyan ◽  
Lars Terenius

Sign in / Sign up

Export Citation Format

Share Document