scholarly journals Mechanisms of actin disassembly

2013 ◽  
Vol 24 (15) ◽  
pp. 2299-2302 ◽  
Author(s):  
William Brieher

The actin cytoskeleton is constantly assembling and disassembling. Cells harness the energy of these turnover dynamics to drive cell motility and organize cytoplasm. Although much is known about how cells control actin polymerization, we do not understand how actin filaments depolymerize inside cells. I briefly describe how the combination of imaging actin filament dynamics in cells and using in vitro biochemistry progressively altered our views of actin depolymerization. I describe why I do not think that the prevailing model of actin filament turnover—cofilin-mediated actin filament severing—can account for actin filament disassembly detected in cells. Finally, I speculate that cells might be able to tune the mechanism of actin depolymerization to meet physiological demands and selectively control the stabilities of different actin arrays.

2005 ◽  
Vol 16 (2) ◽  
pp. 649-664 ◽  
Author(s):  
Pirta Hotulainen ◽  
Eija Paunola ◽  
Maria K. Vartiainen ◽  
Pekka Lappalainen

Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling “old” actin filaments or by promoting actin filament assembly through their severing activity is a matter of controversy. Analysis of mammalian ADF/cofilins is further complicated by the presence of multiple isoforms, which may contribute to actin dynamics by different mechanisms. We show that two isoforms, ADF and cofilin-1, are expressed in mouse NIH 3T3, B16F1, and Neuro 2A cells. Depleting cofilin-1 and/or ADF by siRNA leads to an accumulation of F-actin and to an increase in cell size. Cofilin-1 and ADF seem to play overlapping roles in cells, because the knockdown phenotype of either protein could be rescued by overexpression of the other one. Cofilin-1 and ADF knockdown cells also had defects in cell motility and cytokinesis, and these defects were most pronounced when both ADF and cofilin-1 were depleted. Fluorescence recovery after photobleaching analysis and studies with an actin monomer-sequestering drug, latrunculin-A, demonstrated that these phenotypes arose from diminished actin filament depolymerization rates. These data suggest that mammalian ADF and cofilin-1 promote cytoskeletal dynamics by depolymerizing actin filaments and that this activity is critical for several processes such as cytokinesis and cell motility.


2002 ◽  
Vol 156 (6) ◽  
pp. 1065-1076 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B–induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.


2020 ◽  
pp. jbc.RA120.015863
Author(s):  
Venukumar Vemula ◽  
Tamás Huber ◽  
Marko Ušaj ◽  
Beáta Bugyi ◽  
Alf Mansson

Actin is a major intracellular protein with key functions in cellular motility, signaling and structural rearrangements. Its dynamic behavior, such as polymerisation and depolymerisation of actin filaments in response to intra- and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin-binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.


2009 ◽  
Vol 184 (2) ◽  
pp. 269-280 ◽  
Author(s):  
Christopher J. Staiger ◽  
Michael B. Sheahan ◽  
Parul Khurana ◽  
Xia Wang ◽  
David W. McCurdy ◽  
...  

Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskeleton in growing and nongrowing epidermal cells. One population of filaments in the cortical array, which most likely represent single actin filaments, is randomly oriented and highly dynamic. These filaments grow at rates of 1.7 µm/s, but are generally short-lived. Instead of depolymerization at their ends, actin filaments are disassembled by severing activity. Remodeling of the cortical actin array also features filament buckling and straightening events. These observations indicate a mechanism inconsistent with treadmilling. Instead, cortical actin filament dynamics resemble the stochastic dynamics of an in vitro biomimetic system for actin assembly.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Guillaume Romet-Lemonne ◽  
Antoine Jégou

The turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist.


1996 ◽  
Vol 16 (5) ◽  
pp. 351-368 ◽  
Author(s):  
J. Victor Small ◽  
Kurt Anderson ◽  
Klemens Rottner

To crawl over a substrate a cell must first protrude in front, establish new attachments to the substrate and then retract its rear. Protrusion and retraction utilise different subcompartments of the actin cytoskeleton and operate by different mechanisms, one involving actin polymerization and the other myosin-based contraction. Using as examples the rapidly locomoting keratocyte and the slowly moving fibroblast we illustrate how over expression of one or the other actin subcompartments leads to the observed differences in motility. We also propose, that despite these differences there is a common coordination mechanism underlying the genesis of the actin cytoskeleton that involves the nucleation of actin filaments at the protruding cell front, in the lamellipodium, and the relocation of these filaments, via polymerization and flow, to the more posterior actin filament compartments.


2016 ◽  
Vol 52 (4) ◽  
pp. 807-810 ◽  
Author(s):  
Daniel J. Tetlow ◽  
Steve J. Winder ◽  
Christophe Aïssa

Despite its low affinity for actin monomers, a fragment of kabiramide C disrupts actin filamentsin vitroand in cells.


2020 ◽  
Author(s):  
Venukumar Vemula ◽  
Tamas Huber ◽  
Marko Usaj ◽  
Beáta Bugyi ◽  
Alf Mansson

AbstractActin is a major intracellular protein with key functions in cellular motility, signalling and structural rearrangements. Its dynamic behavior with actin filaments (F-actin) polymerising and depolymerising in response to intracellular changes, is controlled by actin-binding proteins (ABPs). Gelsolin is one of the most potent filament severing ABPs. However, myosin motors that interact with actin in the presence of ATP also produce actin filament fragmentation through motor induced shearing forces. To test the idea that gelsolin and myosin cooperate in these processes we used the in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin (5 nM) at very low [Ca2+] (free [Ca2+] ∼6.8 nM) appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM [MgATP], an effect that was increased at increased HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. As further support of myosin-gelsolin cooperativity we observed reduced sliding velocity of the HMM propelled filaments in the presence of gelsolin. Overall, the results corroborate ideas for cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity, leading among other effects to enhanced F-actin severing of possible physiological relevance.


2020 ◽  
Author(s):  
Hugo Wioland ◽  
Stéphane Frémont ◽  
Bérengère Guichard ◽  
Arnaud Echard ◽  
Antoine Jégou ◽  
...  

ABSTRACTProteins of the ADF/cofilin family play a central role in the disassembly of actin filaments, and their activity must be tightly regulated in cells. Recently, the oxidation of actin filaments by the enzyme MICAL1 was found to amplify the severing action of cofilin through unclear mechanisms. Two essential factors normally prevent filament disassembly: the inactivation of cofilin by phosphorylation, and the protection of filaments by tropomyosins, but whether actin oxidation might interfere with these safeguard mechanisms is unknown. Using single filament experiments in vitro, we found that actin filament oxidation by MICAL1 increases, by several orders of magnitude, both cofilin binding and severing rates, explaining the dramatic synergy between oxidation and cofilin for filament disassembly. Remarkably, we found that actin oxidation bypasses the need for cofilin activation by dephosphorylation. Indeed, non-activated, phosphomimetic S3D-cofilin binds and severs oxidized actin filaments rapidly, in conditions where non-oxidized filaments are unaffected. Finally, tropomyosin Tpm1.8 loses its ability to protect filaments from cofilin severing activity when actin is oxidized by MICAL1. Together, our results show that MICAL1-induced oxidation of actin filaments suppresses their physiological protection from the action of cofilin. We propose that in cells, direct post-translational modification of actin filaments by oxidation is a way to trigger their severing, in spite of being decorated by tropomyosin, and without requiring the activation of cofilin.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Larisa Venkova ◽  
Lina Heydenreich ◽  
Jan Kierfeld ◽  
...  

The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration.


Sign in / Sign up

Export Citation Format

Share Document