scholarly journals The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition

2013 ◽  
Vol 24 (18) ◽  
pp. 2885-2893 ◽  
Author(s):  
Derek A. Applewhite ◽  
Kyle D. Grode ◽  
Mara C. Duncan ◽  
Stephen L. Rogers

Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.

2001 ◽  
Vol 12 (11) ◽  
pp. 3515-3526 ◽  
Author(s):  
Kentaro Nakano ◽  
Kazuomi Satoh ◽  
Akeshi Morimatsu ◽  
Masaaki Ohnuma ◽  
Issei Mabuchi

We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein.fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4288 ◽  
Author(s):  
Lars Backman

The genome of the chlorarchiniophyte Bigelowiella natans codes for a protein annotated as an α-actinin-like protein. Analysis of the primary sequence indicate that this protein has the same domain structure as other α-actinins, a N-terminal actin-binding domain and a C-terminal calmodulin-like domain. These two domains are connected by a short rod domain, albeit long enough to form a single spectrin repeat. To analyse the functional properties of this protein, the full-length protein as well as the separate domains were cloned and isolated. Characerisation showed that the protein is capable of cross-linking actin filaments into dense bundles, probably due to dimer formation. Similar to human α-actinin, calcium-binding occurs to the most N-terminal EF-hand motif in the calmodulin-like C-terminal domain. The results indicate that this Bigelowiella protein is a proper α-actinin, with all common characteristics of a typical α-actinin.


2002 ◽  
Vol 283 (3) ◽  
pp. C850-C865 ◽  
Author(s):  
Caterina Di Ciano ◽  
Zilin Nie ◽  
Katalin Szászi ◽  
Alison Lewis ◽  
Takehito Uruno ◽  
...  

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.


2017 ◽  
Vol 217 (2) ◽  
pp. 779-793 ◽  
Author(s):  
Rebecca C. Adikes ◽  
Ryan A. Hallett ◽  
Brian F. Saway ◽  
Brian Kuhlman ◽  
Kevin C. Slep

We developed a novel optogenetic tool, SxIP–improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein–dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


2015 ◽  
Vol 26 (13) ◽  
pp. 2491-2504 ◽  
Author(s):  
Lauren M. Goins ◽  
R. Dyche Mullins

Most eukaryotic cells express multiple isoforms of the actin-binding protein tropomyosin that help construct a variety of cytoskeletal networks. Only one nonmuscle tropomyosin (Tm1A) has previously been described in Drosophila, but developmental defects caused by insertion of P-elements near tropomyosin genes imply the existence of additional, nonmuscle isoforms. Using biochemical and molecular genetic approaches, we identified three tropomyosins expressed in Drosophila S2 cells: Tm1A, Tm1J, and Tm2A. The Tm1A isoform localizes to the cell cortex, lamellar actin networks, and the cleavage furrow of dividing cells—always together with myosin-II. Isoforms Tm1J and Tm2A colocalize around the Golgi apparatus with the formin-family protein Diaphanous, and loss of either isoform perturbs cell cycle progression. During mitosis, Tm1J localizes to the mitotic spindle, where it promotes chromosome segregation. Using chimeras, we identified the determinants of tropomyosin localization near the C-terminus. This work 1) identifies and characterizes previously unknown nonmuscle tropomyosins in Drosophila, 2) reveals a function for tropomyosin in the mitotic spindle, and 3) uncovers sequence elements that specify isoform-specific localizations and functions of tropomyosin.


2003 ◽  
Vol 2 (4) ◽  
pp. 778-787 ◽  
Author(s):  
Andrew Maselli ◽  
Ruth Furukawa ◽  
Susanne A. M. Thomson ◽  
Richard C. Davis ◽  
Marcus Fechheimer

ABSTRACT Hirano bodies are paracrystalline actin filament-containing structures reported to be associated with a variety of neurodegenerative diseases. However, the biological function of Hirano bodies remains poorly understood, since nearly all prior studies of these structures were done with postmortem samples of tissue. In the present study, we generated a full-length form of a Dictyostelium 34-kDa actin cross-linking protein with point mutations in the first putative EF hand, termed 34-kDa ΔEF1. The 34-kDa ΔEF1 protein binds calcium normally but has activated actin binding that is unregulated by calcium. The expression of the 34-kDa ΔEF1 protein in Dictyostelium induces the formation of Hirano bodies, as assessed by both fluorescence microscopy and transmission electron microscopy. Dictyostelium cells bearing Hirano bodies grow normally, indicating that Hirano bodies are not associated with cell death and are not deleterious to cell growth. Moreover, the expression of the 34-kDa ΔEF1 protein rescues the phenotypes of cells lacking the 34-kDa protein and cells lacking both the 34-kDa protein and α-actinin. Finally, the expression of the 34-kDa ΔEF1 protein also initiates the formation of Hirano bodies in cultured mouse fibroblasts. These results show that the failure to regulate the activity and/or affinity of an actin cross-linking protein can provide a signal for the formation of Hirano bodies. More generally, the formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 810-810 ◽  
Author(s):  
Catherine Korsgren ◽  
Connie S. Birkenmeier ◽  
Jane E. Barker ◽  
Luanne L. Peters ◽  
Samuel E. Lux

Abstract The red blood cell (RBC) membrane skeleton is composed principally of short F-actin filaments crosslinked by α2β2-spectrin tetramers with the assistance of protein 4.1R. Actin and 4.1R bind to the actin-binding domain (βABD) at the N-terminus of the spectrin β-chain. The adjacent, C-terminal end of α-spectrin, contains a calmodulin-like domain (αCML, aa 2262–2418) that is also called the EF hand domain and is thought to be inert or vestigial. However, the sph1J/sph1J mouse, which has severe hereditary spherocytosis and unstable RBC membranes, makes a mutant α-spectrin that lacks the last 13 amino acids (αCMLΔC13), showing that the domain has some important function. To investigate this function we “fished” for interacting proteins using glutathione-S-transferase (GST)-fused to the CML domain—either the wildtype (αGST-CML) or sph1J (αGST-CMLΔC13). αGST-CML retrieved protein 4.2 from a 2M Tris HCl extract of spectrin-actin depleted human RBC membranes. Protein 4.2 bound αGST-CML with high affinity (Kd = 2.7 x 10−7M) but did not bind αGST-CMLΔC13. Binding was abolished by 1 mM Ca2+, which converts the CML domain to the liganded conformation. The binding site on protein 4.2 localized, at least partly, to amino acids 411–492. Because red cells lacking protein 4.2 are not as severely affected as sph1J/sph1J RBCs, we also tested the effect of the αCMLΔC13 mutation on spectrin-actin binding. A minispectrin was prepared containing the actin-binding domain plus the first four spectrin repeats of the β-chain, combined with the CML domain (±ΔC13) and the last four repeats of the α-chain. The normal and mutant minispectrins were incubated with protein 4.1R, F-actin, or both proteins. The results were striking. The minispectrin containing the normal CML domain bound actin in the presence of protein 4.1R, but the minispectrin containing the mutant CML domain did not. Similarly, the mutant minispectrin was defective in its ability to bind 125I-4.1R in the presence of a constant amount of F-actin. However, the mutation did not affect binding of the minispectrin to protein 4.1R in the absence of actin. We have not yet tested whether protein 4.2 or Ca2+ modulate the effects of the CML domain on spectrin-actin binding. In summary, these experiments clearly show that the calmodulin-like (EF hand) domain of α-spectrin, which was previously considered inert, binds protein 4.2 and also contributes to spectrin-actin binding in the presence of protein 4.1R. Further experiments will be needed to determine whether the CML domain binds actin directly or strengthens the binding of the adjacent actin-binding domain.


1990 ◽  
Vol 111 (4) ◽  
pp. 1477-1489 ◽  
Author(s):  
M Brink ◽  
G Gerisch ◽  
G Isenberg ◽  
A A Noegel ◽  
J E Segall ◽  
...  

Actin-binding proteins are known to regulate in vitro the assembly of actin into supramolecular structures, but evidence for their activities in living nonmuscle cells is scarce. Amebae of Dictyostelium discoideum are nonmuscle cells in which mutants defective in several actin-binding proteins have been described. Here we characterize a mutant deficient in the 120-kD gelation factor, one of the most abundant F-actin cross-linking proteins of D. discoideum cells. No F-actin cross-linking activity attributable to the 120-kD protein was detected in mutant cell extracts, and antibodies recognizing different epitopes on the polypeptide showed the entire protein was lacking. Under the conditions used, elimination of the gelation factor did not substantially alter growth, shape, motility, or chemotactic orientation of the cells towards a cAMP source. Aggregates of the mutant developed into fruiting bodies consisting of normally differentiated spores and stalk cells. In cytoskeleton preparations a dense network of actin filaments as typical of the cell cortex, and bundles as they extend along the axis of filopods, were recognized. A significant alteration found was an enhanced accumulation of actin in cytoskeletons of the mutant when cells were stimulated with cyclic AMP. Our results indicate that control of cell shape and motility does not require the fine-tuned interactions of all proteins that have been identified as actin-binding proteins by in vitro assays.


Sign in / Sign up

Export Citation Format

Share Document