scholarly journals The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength

2020 ◽  
Vol 31 (20) ◽  
pp. 2219-2233
Author(s):  
Lénaïg Défachelles ◽  
Anna E. Russo ◽  
Christian R. Nelson ◽  
Needhi Bhalla

The length of the cell cycle delay imposed by the spindle checkpoint, also referred to as the spindle checkpoint strength, is controlled by the number of unattached kinetochores, cell volume, and cell fate. We show that PCH-2, a highly conserved AAA-ATPase, controls checkpoint strength during early embryogenesis in C. elegans.

2018 ◽  
Author(s):  
Lénaïg Défachelles ◽  
Anna E. Russo ◽  
Christian R. Nelson ◽  
Needhi Bhalla

ABSTRACTSpindle checkpoint strength is dictated by three criteria: the number of unattached kinetochores, cell volume and cell fate. We show that the conserved AAA-ATPase, PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in C. elegans. When we manipulate embryos to decrease cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role in checkpoint strength is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31comet, which is required for both PCH-2’s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This role may be specifically relevant in scenarios where maintaining genomic stability is particularly challenging, such as in oocytes and early embryos enlarged for developmental competence and germline cells that maintain immortality.


Development ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 2223-2234 ◽  
Author(s):  
P. M. Fox ◽  
V. E. Vought ◽  
M. Hanazawa ◽  
M.-H. Lee ◽  
E. M. Maine ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3361-3361
Author(s):  
Charlie Mantel ◽  
Sara Rhorabough ◽  
Ying Guo ◽  
Man-Ryul Lee ◽  
Myung-Kwan Han ◽  
...  

Abstract Ex-vivo expansion of human HSC prior to bone marrow transplantation is still an unrealized goal that could greatly extend the usefulness of this mainstay strategy for treating numerous human hematologic diseases. The safety of this process for potential use in humans depends in large part on the maintenance of karyotypic stability of HSC during expansion, a lack of which could contribute to serious, even fatal, complications such as cancer, and could also contribute to engraftment failure. The spindle checkpoint and its linkage to apoptosis initiation is one of the most important cellular processes that helps maintain chromosomal stability in rapidly proliferating cell populations by removing aneuploid and karyotypically abnormal cells via activation of cell death programs. Detailed understanding of the molecular regulation of this vital cell cycle checkpoint is important to maximize safety of in-vitro HSC expansion techniques. It is widely accepted that mammalian cells enter the next G1-phase with 4N DNA after slippage from prolonged drug-induced mitotic block caused by activation of the transient spindle checkpoint that it is from this state that polyploid/aneuploid cells initiate apoptosis. However, definitive biochemical evidence for G1 is scarce or unconvincing; in part because of methods of protein extraction required for immunoblot analysis that cannot take into account the cell cycle heterogeneity of cell cultures. We used single-cell-intracellular-flow-cytometric analysis to define important factors determining cell fate after mitotic slippage. Results from human and mouse embryonic stem cells that reenter polyploid cell cycles are compared to human somatic hematopoietic cells that die after MS. We now report for the first time that phosphorylation status of pRb, p53, CDK1, and cyclin B1 levels are important for cell fate/apoptosis decision in mitotic-slippage cells, which occurs in a unique, intervening, non-G1, tetraploid subphase. Hyperphosphorylated Rb was extremely abundant in mitotic-slippage cells, a cell signaling event usually associated with early G1-S phase transition. P53 was phosphorylated at sites known to be associated with apoptosis regulation. Cyclin A and B1 were undetectable in mitotic slippage cells; yet, CDK1 was phosphorylated at sites typically associated with its activation. Evidence is also presented raising the possibility of cyclin B1-independent CDK1 activity in mitotic-slippage cells. These findings challenge the current models of spindle checkpoint-apoptosis linkages. Our new model could have important implications for methods to maintain karyotypic stability during ex-vivo HSC expansion.


1983 ◽  
Vol 63 (1) ◽  
pp. 135-146
Author(s):  
H.A. Horner ◽  
H.C. Macgregor

Cell volume has been determined in 18 species of amphibian, ranging in C value from 1.4 pg to 62 pg DNA. There is a strong linear relationship between C value and both erythrocyte volume and erythrocyte nuclear volume. We have collected data on the timing of early embryogenesis from fertilization of the egg to the hatching tadpole in some amphibians ranging in C value from 1.4 pg to 83 pg. The species with large genomes take up to 24 times longer to reach a comparable state of development. Polyploid species develop faster than closely related diploid species. These data are discussed in relation to genome expansion and increase in cell cycle time as factors in the evolution of the Amphibia.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4645-4656 ◽  
Author(s):  
Stephen E. Basham ◽  
Lesilee S. Rose

The PAR proteins are required for polarity and asymmetric localization of cell fate determinants in C. elegans embryos. In addition, several of the PAR proteins are conserved and localized asymmetrically in polarized cells in Drosophila, Xenopus and mammals. We have previously shown that ooc-5 and ooc-3 mutations result in defects in spindle orientation and polarity in early C. elegans embryos. In particular, mutations in these genes affect the re-establishment of PAR protein asymmetry in the P1 cell of two-cell embryos. We now report that ooc-5 encodes a putative ATPase of the Clp/Hsp100 and AAA superfamilies of proteins, with highest sequence similarity to Torsin proteins; the gene for human Torsin A is mutated in individuals with early-onset torsion dystonia, a neuromuscular disease. Although Clp/Hsp100 and AAA family proteins have roles in diverse cellular activities, many are involved in the assembly or disassembly of proteins or protein complexes; thus, OOC-5 may function as a chaperone. OOC-5 protein co-localizes with a marker of the endoplasmic reticulum in all blastomeres of the early C. elegans embryo, in a pattern indistinguishable from that of OOC-3 protein. Furthermore, OOC-5 localization depends on the normal function of the ooc-3 gene. These results suggest that OOC-3 and OOC-5 function in the secretion of proteins required for the localization of PAR proteins in the P1 cell, and may have implications for the study of torsion dystonia.


Development ◽  
2013 ◽  
Vol 141 (1) ◽  
pp. 236-236
Author(s):  
D. Z. Korta ◽  
S. Tuck ◽  
E. J. A. Hubbard

2011 ◽  
Vol 300 (3) ◽  
pp. C624-C635 ◽  
Author(s):  
Rebecca A. Falin ◽  
Hiroaki Miyazaki ◽  
Kevin Strange

Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl− cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes.


2012 ◽  
Vol 125 (5) ◽  
pp. e1-e1 ◽  
Author(s):  
D. Z. Korta ◽  
S. Tuck ◽  
E. J. A. Hubbard

2015 ◽  
Vol 211 (3) ◽  
pp. 503-516 ◽  
Author(s):  
Christian R. Nelson ◽  
Tom Hwang ◽  
Pin-Hsi Chen ◽  
Needhi Bhalla

The spindle checkpoint acts during cell division to prevent aneuploidy, a hallmark of cancer. During checkpoint activation, Mad1 recruits Mad2 to kinetochores to generate a signal that delays anaphase onset. Yet, whether additional factors contribute to Mad2’s kinetochore localization remains unclear. Here, we report that the conserved AAA+ ATPase TRIP13PCH-2 localizes to unattached kinetochores and is required for spindle checkpoint activation in Caenorhabditis elegans. pch-2 mutants effectively localized Mad1 to unattached kinetochores, but Mad2 recruitment was significantly reduced. Furthermore, we show that the C. elegans orthologue of the Mad2 inhibitor p31(comet)CMT-1 interacts with TRIP13PCH-2 and is required for its localization to unattached kinetochores. These factors also genetically interact, as loss of p31(comet)CMT-1 partially suppressed the requirement for TRIP13PCH-2 in Mad2 localization and spindle checkpoint signaling. These data support a model in which the ability of TRIP13PCH-2 to disassemble a p31(comet)/Mad2 complex, which has been well characterized in the context of checkpoint silencing, is also critical for spindle checkpoint activation.


Sign in / Sign up

Export Citation Format

Share Document