scholarly journals Evidence for a Nuclear Role for Drosophila Dlg as a Regulator of the NURF Complex

2021 ◽  
pp. mbc.E21-04-0187
Author(s):  
Katherine A. Sharp ◽  
Mark J. Khoury ◽  
Frederick Wirtz-Peitz ◽  
David Bilder

Scrib, Dlg, and Lgl are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry data set, including all four members of the NURF chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.

2021 ◽  
Author(s):  
Katherine A Sharp ◽  
Mark J Khoury ◽  
Frederick Wirtz-Peitz ◽  
David Bilder

Scrib, Dlg, and Lgl are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry data set, including all four members of the NURF chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.


Author(s):  
Athea Vichas ◽  
Naomi T. Nkinsi ◽  
Amanda Riley ◽  
Phoebe C.R. Parrish ◽  
Fujiko Duke ◽  
...  

ABSTRACTAdvances in precision oncology have transformed cancer therapy from broadly-applied cytotoxic therapy to personalized treatments based on each tumor’s unique molecular alterations. Here we investigate the oncogene-specific dependencies conferred by lung cancer driver variants of KRAS, EGFR, and RIT1. Integrative analysis of genome-wide CRISPR screens in isogenic cell lines identified shared and unique vulnerabilities of each oncogene. The non-identical landscape of dependencies underscores the importance of genotype-guided therapies to maximize tumor responses. Combining genetic screening data with small molecule sensitivity profiling, we identify a unique vulnerability of RIT1-mutant cells to loss of spindle assembly checkpoint regulators. This sensitivity may be related to a novel role of RIT1 in mitosis; we find that oncogenic RIT1M90I alters mitotic timing via weakening of the spindle assembly checkpoint. In addition, we uncovered a specific cooperation of mutant RIT1 with loss of Hippo pathway genes. In human lung cancer, RIT1 mutations and amplifications frequently co-occur with loss of Hippo pathway gene expression. These results provide the first genome-wide atlas of oncogenic RIT1-cooperating factors and genetic dependencies and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.


2018 ◽  
Vol 29 (5) ◽  
pp. 1525-1535 ◽  
Author(s):  
Jeremy W. Prokop ◽  
Nan Cher Yeo ◽  
Christian Ottmann ◽  
Surya B. Chhetri ◽  
Kacie L. Florus ◽  
...  

Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14–3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.


2021 ◽  
Author(s):  
Daniel Petras ◽  
Andrés Mauricio Caraballo-Rodríguez ◽  
Alan K. Jarmusch ◽  
Carlos Molina-Santiago ◽  
Julia M. Gauglitz ◽  
...  

Molecular networking of non-targeted tandem mass spectrometry data connects structurally related molecules based on similar fragmentation spectra. Here we report the Chemical Proportionality contextualization of molecular networks. ChemProp scores the changes of abundance between two connected nodes over sequential data series which can be displayed as a direction within the network to prioritize potential biological and chemical transformations or proportional changes of related compounds. We tested the ChemProp workflow on a ground truth data set of defined mixture and highlighted the utility of the tool to prioritize specific molecules within biological samples, including bacterial transformations of bile acids, human drug metabolism and bacterial natural products biosynthesis. The ChemProp workflow is freely available through the Global Natural Products Social Molecular Networking environment.<br><b> </b>


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Jun Zhou ◽  
Yasamin Dabiri ◽  
Rodrigo A. Gama-Brambila ◽  
Shahrouz Ghafoory ◽  
Mukaddes Altinbay ◽  
...  

Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Gunsmaa Nyamsuren ◽  
Gregor Christof Rapp ◽  
Björn Tampe ◽  
Michael Zeisberg

Abstract Background and Aims Aryl hydrocarbon receptor nuclear translocator (ARNT) mediates anti-fibrotic activity in kidney and liver through induction of ALK3-receptor expression and subsequently increased Smad1/5/8 signaling. While expression of ARNT can be pharmacologically induced by sub-immunosuppressive doses of FK506 or by GPI1046, its anti-fibrotic activity is only realized when ARNT-ARNT homodimers form, as opposed to formation of ARNT-AHR or ARNT-HIF1α heterodimers. Mechanisms underlying ARNTs dimerization decision to specifically form ARNT-ARNT homodimers and possible cues to specifically induce ARNT homodimerization have been previously unknown. We here aimed to elucidate the molecular mechanisms underlying control of ARNT dimerization decision and to explore its therapeutic potential. Method We analyzed dimerization of recombinant and native ARNT by immunoprecipitation, MALDI-TOF mass spectrometry, and LS-MS/MS analysis and proximity ligation assay. Phosphorylation sites were mapped through generation of phosphorylation site mutants and through pharmacological inhibition. For in vivo analysis we challenged mice with model of unilateral ureter obstruction and carbon tetrachloride to induce fibrosis in kidney and liver. Results Here we report that inhibition of PP2A phosphatase activity increases intracellular accumulation of ARNT-ARNT homodimers. This effect is dependent on enhanced ARNT-ARNT homodimerization and decreased ARNT proteolytic degradation, but independent of ARNT transcription (which remains unchanged upon PP2A inhibition). We further identify that Ser77 phosphorylation plays a critical role in ARNT homodimerization, as ARNT-ARNT homodimers do not form with Ser77/Asp-mutant ARNT proteins. In light of previous studies which identified anti-fibrotic activity upon increased ARNT expression, we further demonstrate attenuated fibrosis upon monotherapy with the PP2A inhibitor LB100, and additive anti-fibrotic activities upon combination with pharmacological inducers of ARNT expression FK506 or GPI1046 in murine models of kidney and liver fibrosis. Conclusion Our study provides additional evidence for the anti-fibrotic activity of ARNT and reveals Ser77 phosphorylation as a novel pharmacological target to realize the therapeutic potential of increased ARNT transactivation activity.


2019 ◽  
Vol 12 (S12) ◽  
Author(s):  
Mengfei Guo ◽  
Yanan Yu ◽  
Tiancai Wen ◽  
Xiaoping Zhang ◽  
Baoyan Liu ◽  
...  

Abstract Background Disease comorbidity is popular and has significant indications for disease progress and management. We aim to detect the general disease comorbidity patterns in Chinese populations using a large-scale clinical data set. Methods We extracted the diseases from a large-scale anonymized data set derived from 8,572,137 inpatients in 453 hospitals across China. We built a Disease Comorbidity Network (DCN) using correlation analysis and detected the topological patterns of disease comorbidity using both complex network and data mining methods. The comorbidity patterns were further validated by shared molecular mechanisms using disease-gene associations and pathways. To predict the disease occurrence during the whole disease progressions, we applied four machine learning methods to model the disease trajectories of patients. Results We obtained the DCN with 5702 nodes and 258,535 edges, which shows a power law distribution of the degree and weight. It further indicated that there exists high heterogeneity of comorbidities for different diseases and we found that the DCN is a hierarchical modular network with community structures, which have both homogeneous and heterogeneous disease categories. Furthermore, adhering to the previous work from US and Europe populations, we found that the disease comorbidities have their shared underlying molecular mechanisms. Furthermore, take hypertension and psychiatric disease as instance, we used four classification methods to predicte the disease occurrence using the comorbid disease trajectories and obtained acceptable performance, in which in particular, random forest obtained an overall best performance (with F1-score 0.6689 for hypertension and 0.6802 for psychiatric disease). Conclusions Our study indicates that disease comorbidity is significant and valuable to understand the disease incidences and their interactions in real-world populations, which will provide important insights for detection of the patterns of disease classification, diagnosis and prognosis.


Apmis ◽  
2014 ◽  
Vol 123 (4) ◽  
pp. 359-360 ◽  
Author(s):  
Eun Mi Je ◽  
Youn Jin Choi ◽  
Yeun Jun Chung ◽  
Nam Jin Yoo ◽  
Sug Hyung Lee

2020 ◽  
Vol 117 (21) ◽  
pp. 11531-11540 ◽  
Author(s):  
Mark J. Khoury ◽  
David Bilder

A polarized architecture is central to both epithelial structure and function. In many cells, polarity involves mutual antagonism between the Par complex and the Scribble (Scrib) module. While molecular mechanisms underlying Par-mediated apical determination are well-understood, how Scrib module proteins specify the basolateral domain remains unknown. Here, we demonstrate dependent and independent activities of Scrib, Discs-large (Dlg), and Lethal giant larvae (Lgl) using theDrosophilafollicle epithelium. Our data support a linear hierarchy for localization, but rule out previously proposed protein–protein interactions as essential for polarization. Cortical recruitment of Scrib does not require palmitoylation or polar phospholipid binding but instead an independent cortically stabilizing activity of Dlg. Scrib and Dlg do not directly antagonize atypical protein kinase C (aPKC), but may instead restrict aPKC localization by enabling the aPKC-inhibiting activity of Lgl. Importantly, while Scrib, Dlg, and Lgl are each required, all three together are not sufficient to antagonize the Par complex. Our data demonstrate previously unappreciated diversity of function within the Scrib module and begin to define the elusive molecular functions of Scrib and Dlg.


2020 ◽  
Author(s):  
Wenhan Yang ◽  
Youhui Qian ◽  
Kaiping Gao ◽  
Wenjing Zheng ◽  
Guodong Wu ◽  
...  

Abstract Objectives: Increasing evidence suggest that long non-coding RNAs (lncRNAs) play critical roles in cancers. However, the expression pattern and underlying mechanisms of lncRNAs in non-small cell lung cancer (NSCLC) remain incompletely understood. This study aimed to elucidate the functions and molecular mechanisms of a certain lncRNA in NSCLC. Methods: LncRNA microarray was performed to identify differential expressed lncRNAs between pre- and postoperation plasma in NSCLC patients. The expression level of candidate lncRNA in NSCLC tissues, plasma and cells was determined by quantitative real-time PCR (qRT-PCR) and in situ hybridization. The functional roles of lncRNA were assessed in vitro and in vivo. Furthermore, RNA pull-down, RNA immunoprecipitation, microarray, qRT-PCR and rescue assays were conducted to explore the mechanism action of lncRNA in NSCLC cells. Results: We identified a novel lncRNA (BRCAT54), which was significantly upregulated in preoperative plasma, NSCLC tissues and NSCLC cells, and its higher expression was associated with better prognosis in patients with NSCLC. Overexpression of BRCAT54 inhibited proliferation, migration and activated apoptosis in NSCLC cells. Conversely, knockdown of BRCAT54 reversed the suppressive effects of BRCAT54. Moreover, overexpression of BRCAT54 repressed NSCLC cell growth in vivo. Mechanistically, BRCAT54 directly bound to RPS9. Knockdown of RPS9 substantially reversed the promoting effects of si-BRCAT54 on cell proliferation and enhanced the inhibitive effect of si-BRCAT54 on BRCAT54 expression. In addition, silencing of RPS9 activated JAK-STAT pathway and suppressed calcium signaling pathway gene expressions. Conclusion: This study identified BRCAT54 as a tumor suppressor in NSCLC. Targeting the BRCAT54 and RPS9 feedback loop might be a novel therapeutic strategy for NSCLC.


Sign in / Sign up

Export Citation Format

Share Document