FC 006PP2A PHOSPHATASE INHIBITION IS ANTI-FIBROTIC THROUGH SER77 PHOSPHORYLATION-MEDIATED ARNT/ARNT HOMODIMER FORMATION

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Gunsmaa Nyamsuren ◽  
Gregor Christof Rapp ◽  
Björn Tampe ◽  
Michael Zeisberg

Abstract Background and Aims Aryl hydrocarbon receptor nuclear translocator (ARNT) mediates anti-fibrotic activity in kidney and liver through induction of ALK3-receptor expression and subsequently increased Smad1/5/8 signaling. While expression of ARNT can be pharmacologically induced by sub-immunosuppressive doses of FK506 or by GPI1046, its anti-fibrotic activity is only realized when ARNT-ARNT homodimers form, as opposed to formation of ARNT-AHR or ARNT-HIF1α heterodimers. Mechanisms underlying ARNTs dimerization decision to specifically form ARNT-ARNT homodimers and possible cues to specifically induce ARNT homodimerization have been previously unknown. We here aimed to elucidate the molecular mechanisms underlying control of ARNT dimerization decision and to explore its therapeutic potential. Method We analyzed dimerization of recombinant and native ARNT by immunoprecipitation, MALDI-TOF mass spectrometry, and LS-MS/MS analysis and proximity ligation assay. Phosphorylation sites were mapped through generation of phosphorylation site mutants and through pharmacological inhibition. For in vivo analysis we challenged mice with model of unilateral ureter obstruction and carbon tetrachloride to induce fibrosis in kidney and liver. Results Here we report that inhibition of PP2A phosphatase activity increases intracellular accumulation of ARNT-ARNT homodimers. This effect is dependent on enhanced ARNT-ARNT homodimerization and decreased ARNT proteolytic degradation, but independent of ARNT transcription (which remains unchanged upon PP2A inhibition). We further identify that Ser77 phosphorylation plays a critical role in ARNT homodimerization, as ARNT-ARNT homodimers do not form with Ser77/Asp-mutant ARNT proteins. In light of previous studies which identified anti-fibrotic activity upon increased ARNT expression, we further demonstrate attenuated fibrosis upon monotherapy with the PP2A inhibitor LB100, and additive anti-fibrotic activities upon combination with pharmacological inducers of ARNT expression FK506 or GPI1046 in murine models of kidney and liver fibrosis. Conclusion Our study provides additional evidence for the anti-fibrotic activity of ARNT and reveals Ser77 phosphorylation as a novel pharmacological target to realize the therapeutic potential of increased ARNT transactivation activity.

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 373 ◽  
Author(s):  
Arnatchai Maiuthed ◽  
Chuanpit Ninsontia ◽  
Katharina Erlenbach-Wuensch ◽  
Benardina Ndreshkjana ◽  
Julienne Muenzner ◽  
...  

The oncogenic cytoplasmic p21 contributes to cancer aggressiveness and chemotherapeutic failure. However, the molecular mechanisms remain obscure. Here, we show for the first time that cytoplasmic p21 mediates 5-Fluorouracil (5FU) resistance by shuttling p-Chk2 out of the nucleus to protect the tumor cells from its pro-apoptotic functions. We observed that cytoplasmic p21 levels were up-regulated in 5FU-resistant colorectal cancer cells in vitro and the in vivo Chorioallantoic membrane (CAM) model. Kinase array analysis revealed that p-Chk2 is a key target of cytoplasmic p21. Importantly, cytoplasmic form of p21 mediated by p21T145D transfection diminished p-Chk2-mediated activation of E2F1 and apoptosis induction. Co-immunoprecipitation, immunofluorescence, and proximity ligation assay showed that p21 forms a complex with p-Chk2 under 5FU exposure. Using in silico computer modeling, we suggest that the p21/p-Chk2 interaction hindered the nuclear localization signal of p-Chk2, and therefore, the complex is exported out of the nucleus. These findings unravel a novel mechanism regarding an oncogenic role of p21 in regulation of resistance to 5FU-based chemotherapy. We suggest a possible value of cytoplasmic p21 as a prognosis marker and a therapeutic target in colorectal cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gunsmaa Nyamsuren ◽  
Gregor Rapp ◽  
Hassan Dihazi ◽  
Elisabeth M. Zeisberg ◽  
Desiree Tampe ◽  
...  

AbstractAryl hydrocarbon receptor nuclear translocator (ARNT) mediates anti-fibrotic activity in kidney and liver through induction of ALK3-receptor expression and subsequently increased Smad1/5/8 signaling. While expression of ARNT can be pharmacologically induced by sub-immunosuppressive doses of FK506 or by GPI1046, its anti-fibrotic activity is only realized when ARNT-ARNT homodimers form, as opposed to formation of ARNT-AHR or ARNT-HIF1α heterodimers. Mechanisms underlying ARNTs dimerization decision to specifically form ARNT–ARNT homodimers and possible cues to specifically induce ARNT homodimerization have been previously unknown. Here, we demonstrate that phosphorylation of the Ser77 residue is critical for ARNT–ARNT homodimer formation and stabilization. We further demonstrate that inhibition of PP2A phosphatase activity by LB100 enhances ARNT–ARNT homodimers both in vivo and in vitro (mouse tubular epithelial cells and human embryonic kidney cells). In murine models of kidney fibrosis, and also of liver fibrosis, combinations of FK506 or GPI1046 (to induce ARNT expression) with LB100 (to enhance ARNT homodimerization) elicit additive anti-fibrotic activities. Our study provides additional evidence for the anti-fibrotic activity of ARNT–ARNT homodimers and reveals Ser77 phosphorylation as a novel pharmacological target to realize the therapeutic potential of increased ARNT transactivation activity.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 159-169
Author(s):  
Benjamin Boettner ◽  
Phoebe Harjes ◽  
Satoshi Ishimaru ◽  
Michael Heke ◽  
Hong Qing Fan ◽  
...  

Abstract Rap1 belongs to the highly conserved Ras subfamily of small GTPases. In Drosophila, Rap1 plays a critical role in many different morphogenetic processes, but the molecular mechanisms executing its function are unknown. Here, we demonstrate that Canoe (Cno), the Drosophila homolog of mammalian junctional protein AF-6, acts as an effector of Rap1 in vivo. Cno binds to the activated form of Rap1 in a yeast two-hybrid assay, the two molecules colocalize to the adherens junction, and they display very similar phenotypes in embryonic dorsal closure (DC), a process that relies on the elongation and migration of epithelial cell sheets. Genetic interaction experiments show that Rap1 and Cno act in the same molecular pathway during DC and that the function of both molecules in DC depends on their ability to interact. We further show that Rap1 acts upstream of Cno, but that Rap1, unlike Cno, is not involved in the stimulation of JNK pathway activity, indicating that Cno has both a Rap1-dependent and a Rap1-independent function in the DC process.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Manijeh Hamzepoor ◽  
Maryam Sohrabi ◽  
Massoud Saidijam ◽  
Mohammad Javad Assari ◽  
...  

Abstract Background Silver nanoparticles (AgNPs) can accumulate in various organs after oral exposure. The main objective of the current study is to evaluate the renal toxicity induced by AgNPs after repeated oral exposure and to determine the relevant molecular mechanisms. Methods In this study, 40 male Wistar rats were treated with solutions containing 30, 125, 300, and 700 mg/kg of AgNPs. After 28 days of exposure, histopathological changes were assessed using hematoxylin-eosin (H&E), Masson’s trichrome, and periodic acid-Schiff (PAS) staining. Apoptosis was quantified by TUNEL and immunohistochemistry of caspase-3, and the level of expression of the mRNAs of growth factors was determined using RT-PCR. Results Histopathologic examination revealed degenerative changes in the glomeruli, loss of tubular architecture, loss of brush border, and interrupted tubular basal laminae. These changes were more noticeable in groups treated with 30 and 125 mg/kg. The collagen intensity increased in the group treated with 30 mg/kg in both the cortex and the medulla. Apoptosis was much more evident in middle-dose groups (i.e., 125 and 300 mg/kg). The results of RT-PCR indicated that Bcl-2 and Bax mRNAs upregulated in the treated groups (p < 0.05). Moreover, the data related to EGF, TNF-α, and TGF-β1 revealed that AgNPs induced significant changes in gene expression in the groups treated with 30 and 700 mg/kg compared to the control group. Conclusion Our observations showed that AgNPs played a critical role in in vivo renal toxicity.


Reports ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 7
Author(s):  
Lea Mallo ◽  
Valentin Do Sacramento ◽  
Christian Gachet ◽  
Susan Chan ◽  
Philippe Kastner ◽  
...  

In vitro, the differentiation of megakaryocytes (MKs) is improved by aryl-hydrocarbon receptor (AHR) antagonists such as StemRegenin 1 (SR1), an effect physiologically recapitulated by the presence of stromal mesenchymal cells (MSC). This inhibition promotes the amplification of a CD34+CD41low population able to mature as MKs with a high capacity for platelet production. In this short report, we showed that the emergence of the thrombocytogenic precursors and the enhancement of platelet production triggered by SR1 involved IKAROS. The downregulation/inhibition of IKAROS (shRNA or lenalidomide) significantly reduced the emergence of SR1-induced thrombocytogenic population, suggesting a crosstalk between AHR and IKAROS. Interestingly, using a proximity ligation assay, we could demonstrate a physical interaction between AHR and IKAROS. This interaction was also observed in the megakaryocytic cells differentiated in the presence of MSCs. In conclusion, our study revealed a previously unknown AHR/ IKAROS -dependent pathway which prompted the expansion of the thrombocytogenic precursors. This AHR- IKAROS dependent checkpoint controlling MK maturation opens new perspectives to platelet production engineering.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Cai ◽  
Kewa Gao ◽  
Bi Peng ◽  
Zhijie Xu ◽  
Jinwu Peng ◽  
...  

Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.


2021 ◽  
Author(s):  
Xin Peng ◽  
Shaolu Zhang ◽  
Wenhui Jiao ◽  
Zhenxing Zhong ◽  
Yuqi Yang ◽  
...  

Abstract Background: The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer.Methods: The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. Results: HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. Conclusions: Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the “off target” effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.


Blood ◽  
2004 ◽  
Vol 103 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ryan A. Wilcox ◽  
Koji Tamada ◽  
Dallas B. Flies ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
...  

Abstract T-cell anergy is a tolerance mechanism defined as a hyporesponsive status of antigen-specific T cells upon prior antigen encounter and is believed to play a critical role in the evasion of tumor immunity and the amelioration of allogeneic transplant rejection. Molecular mechanisms in controlling T-cell anergy are less known. We show here that administration of an agonistic monoclonal antibody (mAb) to CD137, a member of the tumor necrosis factor receptor superfamily, prevents the induction of CD8+ cytolytic T-lymphocyte (CTL) anergy by soluble antigens. More importantly, CD137 mAb restores the functions of established anergic CTLs upon reencountering their cognate antigen. As a result, infusion of CD137 mAb inhibits progressive tumor growth that is caused by soluble tumor antigen-induced tolerance in a P815R model. CD137 mAb also restores proliferation and effector functions of anergic alloreactive 2C T cells in a bone marrow transplantation model. Our results indicate that ligation of CD137 receptor delivers a regulatory signal for T-cell anergy and implicate manipulation of the CD137 pathway as a new approach to break T-cell tolerance.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4300-4300
Author(s):  
Sigal Gery ◽  
Sakae Stanosaki ◽  
Takayuki Ikezoe ◽  
Wolf K. Hofmann ◽  
Adrian F. Gombart ◽  
...  

Abstract C/EBPδ belongs to the family of highly conserved CCAAT/enhancer binding protein (C/EBP) transcription factors. Members of this family play a critical role in the regulation of mitotic growth arrest and differentiation in numerous cell types. To examine the consequences of C/EPBδ expression, we transfected C/EPBδ into CML myeloid leukemia (KCL22, K562), prostate (LNCaP, PC3, DU145), and breast (MCF-7, T47D, MDA-MB-231) cancer cell lines. C/EBPδ expression resulted in a proliferative arrest and an increase in apoptosis of the myeloid leukemia cells, as well as the prostate cells LNCaP and PC3, and the breast cells MCF-7 and T47D. In contrast, DU145 prostate and MDA-MB-231 breast cancer cells were not inhibited by C/EBPδ, indicating that the biologically properties of C/EBPδ depend upon its cellular context. We further studied the molecular mechanisms underlying the affect of C/EPBδ expression in CML leukemic cells. Myeloid differentiation of KCL22 and K562 blast cells as shown by morphologic changes and induction of secondary specific granule genes, occurred within 4 days of inducing expression of C/EBPδ. Furthermore, expression of C/EBPδ was associated with downregulation of c-Myc and cyclin E, and upregulation of the forkhead transcription factor FoxO1a (FKHR) and the cyclin-dependent kinase inhibitor p27Kip1. In addition, microarray analysis showed that C/EBPδ mRNA is upregulated during granulocytic differentiation of normal CD34+ bone marrow cells, suggesting that C/EBPδ is involved in lineage-specific differentiation. Taken together, these results show that expression of C/EBPδ in BCR-ABL-positive CML cells in blast crisis, is sufficient for neutrophil differentiation and suggest that ectopic induction of C/EBPδ in the blastic phase of CML, as well as in certain cases of prostate and breast cancers, may hold promising therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document