Cultural differences in non-social neural processes

Author(s):  
Shihui Han

Chapter 3 presents a theoretical framework for understanding the relationship between sociocultural experience and cognition, and for explanation of the differences in cognition and behavior between East Asian and Western cultures. It further reviews cultural neuroscience findings that uncover common and distinct neural underpinnings of cognitive processes in individuals from Western and East Asian cultures. Cross-cultural brain imaging findings have shown evidence for differences in brain activity between East Asian and Western cultures involved in perception, attention, memory, causality judgment, mathematical operation, semantic relationship, and decision making. The cultural neuroscience findings reveal neural bases for cultural preferences of context-independent or context-dependent strategies of cognition in multiple neural systems.

2020 ◽  
Author(s):  
Robert W Glosemeyer ◽  
Susanne Diekelmann ◽  
Werner Cassel ◽  
Karl Kesper ◽  
Ulrich Koehler ◽  
...  

AbstractHealthy sleep, positive general affect, and the ability to regulate emotional experiences are fundamental for well-being. In contrast, various mental disorders are associated with altered rapid eye movement (REM) sleep, negative affect, and diminished emotion regulation abilities. However, the neural processes mediating the relationship between these different phenomena are still not fully understood. In the present study of 42 healthy volunteers, we investigated the effects of selective REM sleep suppression (REMS) on general affect, as well as on feelings of social exclusion, emotion regulation, and their neural underpinnings. Using functional magnetic resonance imaging we show that REMS increases amygdala responses to experimental social exclusion, as well as negative affect on the morning following sleep deprivation. There was no evidence that emotional responses to experimentally induced social exclusion or their regulation using cognitive reappraisal were impacted by diminished REM sleep. Our findings indicate that general affect and amygdala activity depend on REM sleep, while specific emotional experiences possibly rely on additional psychological processes and neural systems that are less readily influenced by REMS.


2021 ◽  
Author(s):  
Sabrina A Jones ◽  
Jacob H Barfield ◽  
Woodrow L Shew

Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure, thought to confer functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here we show that scale-free dynamics of behavior and certain subsets of cortical neurons are one-to-one related. Surprisingly, the scale-free neural subsets exhibit stochastic winner-take-all competition with other neural subsets, inconsistent with prevailing theory of scale-free neural systems. We develop a computational model which accounts for known cell-type-specific circuit structure and explains our findings. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity, which was previously thought to represent background noise in cerebral cortex.


Author(s):  
Dale Purves

Brains as Engines of Association seeks an operating principle of the human brain and is divided into four parts. The first part (“What Nervous Systems Do for Animals”) is intended to set the stage for understanding the emergence of neural systems as promoting what all organisms must accomplish: survival and reproduction. The second part (“Neural Systems as Engines of Association”) lays out the general argument that biological sensing systems face a daunting problem: they cannot measure the parameters of the world in the way physical instruments can. As a result, nervous systems must make and update associations (synaptic connections) on the basis of empirical success or failure over both evolutionary and individual time. The third part (“Evidence that Neural Systems Operate Empirically”) reviews evidence accumulated over the past 20 years that supports this interpretation in vision and audition, the sensory systems that have been most studied from this or any other perspective. Finally, the fourth part (“Alternative Concepts of Neural Function”) considers the pros and cons of other interpretations of how brains operate. The overarching theme is that the nervous systems of humans and every other animal operate on the basis associations between stimuli and behavior made by trial and error over species and lifetime experience.


2019 ◽  
Author(s):  
Jennifer Stiso ◽  
Marie-Constance Corsi ◽  
Javier Omar Garcia ◽  
Jean M Vettel ◽  
Fabrizio De Vico Fallani ◽  
...  

Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method -- non-negative matrix factorization -- to simultaneously identify regularized, covarying subgraphs of functional connectivity and behavior, and to detect the time-varying expression of each subgraph. We find that learning is marked by distributed brain-behavior relations: swifter learners displayed many subgraphs whose temporal expression tracked performance. Learners also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in networks important for sustaining attention. After formalizing the model in the framework of network control theory, we test the model and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of brain regions important for attention. The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.


2017 ◽  
Vol 29 (10) ◽  
pp. 1684-1698 ◽  
Author(s):  
Benjamin R. Eisenreich ◽  
Rei Akaishi ◽  
Benjamin Y. Hayden

Executive control refers to the regulation of cognition and behavior by mental processes and is a hallmark of higher cognition. Most approaches to understanding its mechanisms begin with the assumption that our brains have anatomically segregated and functionally specialized control modules. The modular approach is intuitive: Control is conceptually distinct from basic mental processing, so an organization that reifies that distinction makes sense. An alternative approach sees executive control as self-organizing principles of a distributed organization. In distributed systems, control and controlled processes are colocalized within large numbers of dispersed computational agents. Control then is often an emergent consequence of simple rules governing the interaction between agents. Because these systems are unfamiliar and unintuitive, here we review several well-understood examples of distributed control systems, group living insects and social animals, and emphasize their parallels with neural systems. We then reexamine the cognitive neuroscience literature on executive control for evidence that its neural control systems may be distributed.


2022 ◽  
pp. 1-13
Author(s):  
Audrey Siqi-Liu ◽  
Tobias Egner ◽  
Marty G. Woldorff

Abstract To adaptively interact with the uncertainties of daily life, we must match our level of cognitive flexibility to contextual demands—being more flexible when frequent shifting between different tasks is required and more stable when the current task requires a strong focus of attention. Such cognitive flexibility adjustments in response to changing contextual demands have been observed in cued task-switching paradigms, where the performance cost incurred by switching versus repeating tasks (switch cost) scales inversely with the proportion of switches (PS) within a block of trials. However, the neural underpinnings of these adjustments in cognitive flexibility are not well understood. Here, we recorded 64-channel EEG measures of electrical brain activity as participants switched between letter and digit categorization tasks in varying PS contexts, from which we extracted ERPs elicited by the task cue and alpha power differences during the cue-to-target interval and the resting precue period. The temporal resolution of the EEG allowed us to test whether contextual adjustments in cognitive flexibility are mediated by tonic changes in processing mode or by changes in phasic, task cue-triggered processes. We observed reliable modulation of behavioral switch cost by PS context that was mirrored in both cue-evoked ERP and time–frequency effects but not by blockwide precue EEG changes. These results indicate that different levels of cognitive flexibility are instantiated after the presentation of task cues, rather than by being maintained as a tonic state throughout low- or high-switch contexts.


Author(s):  
Juergen Dukart ◽  
Ross D. Markello ◽  
Adrian Raine ◽  
Simon B. Eickhoff ◽  
Timm B. Poeppl

Sign in / Sign up

Export Citation Format

Share Document