Downscaling Climate Information

Author(s):  
Rasmus Benestad

What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.

Author(s):  
Aristita Busuioc ◽  
Alexandru Dumitrescu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.The concept of statistical downscaling or empirical-statistical downscaling became a distinct and important scientific approach in climate science in recent decades, when the climate change issue and assessment of climate change impact on various social and natural systems have become international challenges. Global climate models are the best tools for estimating future climate conditions. Even if improvements can be made in state-of-the art global climate models, in terms of spatial resolution and their performance in simulation of climate characteristics, they are still skillful only in reproducing large-scale feature of climate variability, such as global mean temperature or various circulation patterns (e.g., the North Atlantic Oscillation). However, these models are not able to provide reliable information on local climate characteristics (mean temperature, total precipitation), especially on extreme weather and climate events. The main reason for this failure is the influence of local geographical features on the local climate, as well as other factors related to surrounding large-scale conditions, the influence of which cannot be correctly taken into consideration by the current dynamical global models.Impact models, such as hydrological and crop models, need high resolution information on various climate parameters on the scale of a river basin or a farm, scales that are not available from the usual global climate models. Downscaling techniques produce regional climate information on finer scale, from global climate change scenarios, based on the assumption that there is a systematic link between the large-scale and local climate. Two types of downscaling approaches are known: a) dynamical downscaling is based on regional climate models nested in a global climate model; and b) statistical downscaling is based on developing statistical relationships between large-scale atmospheric variables (predictors), available from global climate models, and observed local-scale variables of interest (predictands).Various types of empirical-statistical downscaling approaches can be placed approximately in linear and nonlinear groupings. The empirical-statistical downscaling techniques focus more on details related to the nonlinear models—their validation, strengths, and weaknesses—in comparison to linear models or the mixed models combining the linear and nonlinear approaches. Stochastic models can be applied to daily and sub-daily precipitation in Romania, with a comparison to dynamical downscaling. Conditional stochastic models are generally specific for daily or sub-daily precipitation as predictand.A complex validation of the nonlinear statistical downscaling models, selection of the large-scale predictors, model ability to reproduce historical trends, extreme events, and the uncertainty related to future downscaled changes are important issues. A better estimation of the uncertainty related to downscaled climate change projections can be achieved by using ensembles of more global climate models as drivers, including their ability to simulate the input in downscaling models. Comparison between future statistical downscaled climate signals and those derived from dynamical downscaling driven by the same global model, including a complex validation of the regional climate models, gives a measure of the reliability of downscaled regional climate changes.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012070
Author(s):  
C N Nielsen ◽  
J Kolarik

Abstract As the climate is changing and buildings are designed with a life expectancy of 50+ years, it is sensible to take climate change into account during the design phase. Data representing future weather are needed so that building performance simulations can predict the impact of climate change. Currently, this usually requires one year of weather data with a temporal resolution of one hour, which represents local climate conditions. However, both the temporal and spatial resolution of global climate models is generally too coarse. Two general approaches to increase the resolution of climate models - statistical and dynamical downscaling have been developed. They exist in many variants and modifications. The present paper aims to provide a comprehensive overview of future weather application as well as critical insights in the model and method selection. The results indicate a general trend to select the simplest methods, which often involves a compromise on selecting climate models.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 699
Author(s):  
Dario Conte ◽  
Silvio Gualdi ◽  
Piero Lionello

This study explores the role of model resolution on the simulation of precipitation and on the estimate of its future change in the Mediterranean region. It compares the results of two regional climate models (RCMs, with two different horizontal grid resolutions, 0.44 and 0.11 degs, covering the whole Mediterranean region) and of the global climate model (GCM, 0.75 degs) that has provided the boundary conditions for them. The regional climate models include an interactive oceanic component with a resolution of 1/16 degs. The period 1960–2100 and the representative concentration pathways RCP4.5 and RCP8.5 are considered. The results show that, in the present climate, increasing resolution increases total precipitation and its extremes over steep orography, while it has the opposite effect over flat areas and the sea. Considering climate change, in all simulations, total precipitation will decrease over most of the considered domain except at the northern boundary, where it will increase. Extreme precipitation will increase over most of the northern Mediterranean region and decrease over the sea and some southern areas. Further, the overall probability of precipitation (frequency of wet days) significantly decreases over most of the region, but wet days will be characterized with precipitation intensity higher than the present. Our analysis shows that: (1) these projected changes are robust with respect to the considered range of model resolution; (2) increasing the resolution (within the considered resolution range) decreases the magnitude of these climate change effects. However, it is likely that resolution plays a less important role than other factors, such as the different physics of regional and global climate models. It remains to be investigated whether further increasing the resolution (and reaching the scale explicitly permitting convection) would change this conclusion.


2021 ◽  
pp. 403-417
Author(s):  
Amit Dubey ◽  
Deepak Swami ◽  
Nitin Joshi

ncrease in the water scarcity and the related rise in demand of water coupled with the threating events of climate change, ultimately witnessed drought in the recent years to occur frequently. Therefore, Drought hydrology is drawing most of the attention. Drought which is a natural hazard can be best characterized by various hydrological and climatological parameters. In order to model drought, researchers have applied various concepts starting from simplistic model to the complex ones. The suitability of different modelling approaches and their negative and positive traits are very essential to comprehend. This paper is an attempt to review various methodologies utilized in modelling of drought such as forecasting of drought, drought modelling based on probability, Global Climate Models (GCM) under climate change scenarios. It is obtained from the present study that the past three decades have witnessed a very significant improvement in the drought modelling studies. For the larger time window of drought forecasting, hybrid models which incorporates large scale climate indices are promisingly suitable. Drought characterization based on copula models for multivariate drought characterization seems to have an edge over the others. At the end some conclusive remarks are made as far as the future drought modelling and research is concerned.


2021 ◽  
Author(s):  
Lukas Gudmundsson ◽  
Josefine Kirchner ◽  
Anne Gädeke ◽  
Eleanor Burke ◽  
Boris K. Biskaborn ◽  
...  

<p>Permafrost temperatures are increasing at the global scale, resulting in permafrost degradation. Besides substantial impacts on Arctic and Alpine hydrology and the stability of landscapes and infrastructure, permafrost degradation can trigger a large-scale release of carbon to the atmosphere with possible global climate feedbacks. Although increasing global air temperature is unanimously linked to human emissions into the atmosphere, the attribution of observed permafrost warming to anthropogenic climate change has so far mostly relied on anecdotal evidence. Here we apply a climate change detection and attribution approach to long permafrost temperature records from 15 boreholes located in the northern Hemisphere and simulated soil temperatures obtained from global climate models contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We show that observed and simulated trends in permafrost temperature are only consistent if the effect of human emissions on the climate system is considered in the simulations. Moreover, the analysis also reveals that neither simulated pre-industrial climate variability nor the effects natural drivers of climate change (e.g. impacts of large volcanic eruptions) suffice to explain the observed trends. While these results are most significant for a global mean assessment, our analysis also reveals that simulated effects of anthropogenic climate change on permafrost temperature are also consistent with the observed record at the station scale. In summary, the quantitative combination of observed and simulated evidence supports the conclusion that anthropogenic climate change is the key driver of increasing permafrost temperatures with implications for carbon cycle-climate feedbacks at the planetary scale.</p>


2016 ◽  
Vol 8 (2) ◽  
pp. 30 ◽  
Author(s):  
Micah J. Hewer ◽  
William A. Gough

Weather and climate have been widely recognised as having an important influence on tourism and recreational activities. However, the nature of these relationships varies depending on the type, timing and location of these activities. Climate change is expected to have considerable and diverse impacts on recreation and tourism. Nonetheless, the potential impact of climate change on zoo visitation has yet to be assessed in a scientific manner. This case study begins by establishing the baseline conditions and statistical relationship between weather and zoo visitation in Toronto, Canada. Regression analysis, relying on historical weather and visitation data, measured at the daily time scale, formed the basis for this analysis. Climate change projections relied on output produced by Global Climate Models (GCMs) for the Intergovernmental Panel on Climate Change’s 2013 Fifth Assessment Report, ranked and selected using the herein defined Selective Ensemble Approach. This seasonal GCM output was then used to inform daily, local, climate change scenarios, generated using Statistical Down-Scaling Model Version 5.2. A series of seasonal models were then used to assess the impact of projected climate change on zoo visitation. While accounting for the negative effects of precipitation and extreme heat, the models suggested that annual visitation to the zoo will likely increase over the course of the 21st century due to projected climate change: from +8% in the 2020s to +18% by the 2080s, for the least change scenario; and from +8% in the 2020s to +34% in the 2080s, for the greatest change scenario. The majority of the positive impact of projected climate change on zoo visitation in Toronto will likely occur in the shoulder season (spring and fall); with only moderate increases in the off season (winter) and potentially negative impacts associated with the peak season (summer), especially if warming exceeds 3.5 °C.


2018 ◽  
Vol 31 (24) ◽  
pp. 10013-10020
Author(s):  
Bernard R. Lipat ◽  
Aiko Voigt ◽  
George Tselioudis ◽  
Lorenzo M. Polvani

Recent analyses of global climate models suggest that uncertainty in the coupling between midlatitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud–circulation coupling have remained unclear. Here, we use a global climate model in an idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud–circulation coupling. For the same poleward shift of the Hadley cell (HC) edge, models with narrower climatological HCs exhibit stronger midlatitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the midlatitude cloud–circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.


2019 ◽  
Vol 41 (3) ◽  
pp. 42-47
Author(s):  
Rebecca K. Zarger ◽  
Gina Larsen ◽  
Alexis Winter ◽  
Libby Carnahan ◽  
Ramona Madhosingh-Hector ◽  
...  

Abstract Our project investigates public perceptions of climate change risk and vulnerability in the Tampa Bay, Florida, region, specifically focused on how climate change is likely to impact water infrastructure in the area. As part of the project, our research team of anthropologists and environmentally-focused state extension agents collaboratively developed public workshops to promote more dialogue on local climate change impacts. The anthropologists developed localized climate change scenarios based on global climate models, Florida-centric models, and input from key informants. Extension agents brought expertise in climate and sustainability science and facilitating educational programming and dialogue. We documented residents' concerns and views on climate change, how local scenarios are received by the public, and how scenarios can be communicated to the public through narrative and visual formats. We consider the roles of anthropologist-extension agent partnerships in creating new spaces for dialogue on climate change futures.


Sign in / Sign up

Export Citation Format

Share Document