Drought modelling under climate change scenarios and its probabilistic characterization: A Review

2021 ◽  
pp. 403-417
Author(s):  
Amit Dubey ◽  
Deepak Swami ◽  
Nitin Joshi

ncrease in the water scarcity and the related rise in demand of water coupled with the threating events of climate change, ultimately witnessed drought in the recent years to occur frequently. Therefore, Drought hydrology is drawing most of the attention. Drought which is a natural hazard can be best characterized by various hydrological and climatological parameters. In order to model drought, researchers have applied various concepts starting from simplistic model to the complex ones. The suitability of different modelling approaches and their negative and positive traits are very essential to comprehend. This paper is an attempt to review various methodologies utilized in modelling of drought such as forecasting of drought, drought modelling based on probability, Global Climate Models (GCM) under climate change scenarios. It is obtained from the present study that the past three decades have witnessed a very significant improvement in the drought modelling studies. For the larger time window of drought forecasting, hybrid models which incorporates large scale climate indices are promisingly suitable. Drought characterization based on copula models for multivariate drought characterization seems to have an edge over the others. At the end some conclusive remarks are made as far as the future drought modelling and research is concerned.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yang ◽  
Maigeng Zhou ◽  
Zhoupeng Ren ◽  
Mengmeng Li ◽  
Boguang Wang ◽  
...  

AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


2020 ◽  
Author(s):  
James Murphy

<p>The challenge of combining initialised and uninitialised decadal projections</p><p>James Murphy, Robin Clark, Nick Dunstone, Glen Harris, Leon Hermanson and Doug Smith</p><p>During the past 10 years or so, exploratory work in initialised decadal climate prediction, using global climate models started from recent analyses of observations, has grown into a coordinated international programme that contributes to IPCC assessments. At the same time, countries have continued to develop and update their national climate change scenarios.  These typically cover the full 21<sup>st</sup> century, including the initial decade that overlaps with the latest initialised forecasts. To date, however, national scenarios continue to be based exclusively on long-term (uninitialised) climate change simulations, with initialised information regarded as a separate stream of information.</p><p>We will use early results from the latest UK national scenarios (UKCP), and the latest CMIP6 initialised predictions, to illustrate the potential and challenges associated with the notion of combining both streams of information. This involves assessing the effects of initialisation on predictability and uncertainty (as indicated, for example, by the skill of ensemble-mean forecasts and the spread amongst constituent ensemble members). Here, a particular challenge involves interpretation of the “signal-to-noise” problem, in which ensemble-mean skill can sometimes be found which is larger than would be expected on the basis of the ensemble spread. In addition to initialisation, we will also emphasise the importance of understanding how the assessment of climate risks depends on other features of prediction system design, including the sampling of model uncertainties and the simulation of internal climate variability.</p>


2020 ◽  
Vol 9 (6) ◽  
pp. 361
Author(s):  
Rafaela Lisboa Costa ◽  
Heliofábio Barros Gomes ◽  
Fabrício Daniel Dos Santos Silva ◽  
Rodrigo Lins Da Rocha Júnior

The objective of this work was to analyze and compare results from two generations of global climate models (GCMs) simulations for the city of Recife-PE: CMIP3 and CMIP5. Differences and similarities in historical and future climate simulations are presented for four GCMs using CMIP3 scenarios A1B and A2 and for seven CMIP5 scenarios RCP4.5 and RCP8.5. The scale reduction technique applied to GCMs scenarios is statistical downscaling, employing the same set of large-scale atmospheric variables as predictors for both sets of scenarios, differing only in the type of reanalysis data used to characterize surface variables precipitation, maximum and minimum temperatures. For CMIP3 scenarios the simulated historical climate is 1961-1990 and CMIP5 is 1979-2000, and the validation period is ten years, 1991-2000 for CMIP3 and 2001-2010 for CMIP5. However, for both the future period analyzed is 2021-2050 and 2051-2080. Validation metrics indicated superior results from the historical simulations of CMIP5 over those of CMIP3 for precipitation and minimum and similar temperatures for maximum temperatures. For the future, both CMIP3 and CMIP5 scenarios indicate reduced precipitation and increased temperatures. The potencial evapotranspiration was calculated, projected to increase in scenarios A1B and A2 of CMIP3 and with behavior similar to that observed historically in scenarios RCP4.5 and 8.5.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1803
Author(s):  
Inmaculada C. Jiménez-Navarro ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Julio Pérez-Sánchez ◽  
Javier Senent-Aparicio

Precipitation and temperature around the world are expected to be altered by climate change. This will cause regional alterations to the hydrological cycle. For proper water management, anticipating these changes is necessary. In this study, the basin of Lake Erken (Sweden) was simulated with the recently released software SWAT+ to study such alterations in a short (2026–2050), medium (2051–2075) and long (2076–2100) period, under two different climate change scenarios (SSP2-45 and SSP5-85). Seven global climate models from the latest projections of future climates that are available (CIMP 6) were compared and ensembled. A bias-correction of the models’ data was performed with five different methods to select the most appropriate one. Results showed that the temperature is expected to increase in the future from 2 to 4 °C, and precipitation from 6% to 20%, depending on the scenario. As a result, water discharge would also increase by about 18% in the best-case scenario and by 50% in the worst-case scenario, and the surface runoff would increase between 5% and 30%. The floods and torrential precipitations would also increase in the basin. This trend could lead to soil impoverishment and reduced water availability in the basin, which could damage the watershed’s forests. In addition, rising temperatures would result in a 65% reduction in the snow water equivalent at best and 92% at worst.


Author(s):  
Rasmus Benestad

What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.


Author(s):  
Jayne F. Knott ◽  
Jo E. Sias ◽  
Eshan V. Dave ◽  
Jennifer M. Jacobs

Pavements are vulnerable to reduced life with climate-change-induced temperature rise. Greenhouse gas emissions have caused an increase in global temperatures since the mid-20th century and the warming is projected to accelerate. Many studies have characterized this risk with a top-down approach in which climate-change scenarios are chosen and applied to predict pavement-life reduction. This approach is useful in identifying possible pavement futures but may miss short-term or seasonal pavement-response trends that are essential for adaptation planning. A bottom-up approach focuses on a pavement’s response to incremental temperature change resulting in a more complete understanding of temperature-induced pavement damage. In this study, a hybrid bottom-up/top-down approach was used to quantify the impact of changing pavement seasons and temperatures on pavement life with incremental temperature rise from 0 to 5°C at a site in coastal New Hampshire. Changes in season length, seasonal average temperatures, and temperature-dependent resilient modulus were used in layered-elastic analysis to simulate the pavement’s response to temperature rise. Projected temperature rise from downscaled global climate models was then superimposed on the results to determine the timing of the effects. The winter pavement season is projected to end by mid-century, replaced by a lengthening fall season. Seasonal pavement damage, currently dominated by the late spring and summer seasons, is projected to be distributed more evenly throughout the year as temperatures rise. A 7% to 32% increase in the asphalt-layer thickness is recommended to protect the base and subgrade with rising temperatures from early century to late-mid-century.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav5014 ◽  
Author(s):  
Julius J. M. Busecke ◽  
Ryan P. Abernathey

Mesoscale turbulence in the ocean strongly affects the circulation, water mass formation, and transport of tracers. Little is known, however, about how mixing varies on climate timescales. We present the first time-resolved global dataset of lateral mesoscale eddy diffusivities at the ocean surface, obtained by applying the suppressed mixing length theory to satellite-observed velocities. We find interannual variability throughout the global ocean, regionally correlated with climate indices such as ENSO, NAO, DMI, and PDO. Changes in mixing length, driven by variations in the large-scale flow, often exceed the effect of variations in local eddy kinetic energy, previously thought of as the primary driver of variability in eddy mixing. This mechanism, not currently represented in global climate models, could have far-reaching consequences for the distribution of heat, salt, and carbon in the global ocean, as well as ecosystem dynamics and regional dynamics such as ENSO variance.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


2021 ◽  
Author(s):  
Yusuke Satoh ◽  
Hideo Shiogama ◽  
Naota Hanasaki ◽  
Yadu Pokhrel ◽  
Julien Boulange ◽  
...  

<p>Droughts are anticipated to intensify or become more frequent in many parts of the world due to climate change. However, the issue of drought definition, namely the diversity of drought definition, makes it difficult to compare drought projections and hampers overviewing future changes in drought. This issue is widely known and underscored in recent reports of the Intergovernmental Panel on Climate Change, but the relative importance of the issue and its spatial distribution have never been quantitatively evaluated compared to other sources of uncertainty.</p><p>Here, using a multi-scenario and multi-model dataset with combinations of three climate change scenarios, four global climate models and seven global water models, we evaluated changes in the frequency of three categories of drought (meteorological, agricultural, and hydrological droughts) by a consistent standardized approach with four different temporal scales of accumulation periods to show how differences among the drought definitions could result in critical uncertainties. For simplicity, this study focuses on one drought index per drought category. Firstly we investigated the disagreement in the sign of changes between definitions, and then we decomposed the overall uncertainty to estimate the relative importance of each source of uncertainty. By a multifactorial ANOVA, uncertainty was decomposed into four main factors, namely drought definitions, climate change scenarios, global climate models and global water impact models, and their interactions.</p><p>Our results highlight specific regions where the sign of change disagrees between drought definitions. Importantly, changes in drought frequency in such regions tended to be statistically insignificant with low ensemble member agreement. Drought definition attributed to18% of the main factor uncertainty at the global scale, and the definition was the dominant uncertainty source over 11% of the global land area. The contribution of difference in the drought category showed a higher contribution to overall uncertainty than the difference in scales. The contribution of scenario uncertainty was the least among the main factors in general, though it is a dominant factor in the far-future in a couple of hotspot regions such as the Mediterranean region. Overall, model uncertainties were the primary source of uncertainty, and the definition issue was less important over large areas. However, definition uncertainty was the primal uncertainty source with significant changes in particular regions, such as parts of high-latitude areas in the northern hemisphere. One needs to pay attention to these regions in overviewing future drought change. Nonetheless, what this study quantified is the relative importance of uncertainty stemming from drought definition that should be avoidable or reducible if one treats drought specifically. Our results indicate that we can reduce uncertainty in drought projections to some extent and get a clearer picture by clarifying hydrological processes or sectors of interest.</p>


Sign in / Sign up

Export Citation Format

Share Document