Solar Chromosphere

Author(s):  
Shahin Jafarzadeh

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Physics. Please check back later for the full article. The solar chromosphere (color sphere) is a strongly structured and highly dynamic region (layer) of the Sun’s atmosphere, located above the bright, visible photosphere. It is optically thin in the near-ultraviolet to near-infrared spectral range, but optically thick in the millimeter range and in strong spectral lines. Particularly important is the departure from the local thermodynamic equilibrium as one moves from the photosphere to the chromosphere. In a plane-parallel model, the temperature gradually rises from the low chromosphere outwards (radially from the center of the Sun), against the rapid decrease in both gas density and pressure with height throughout the entire solar atmosphere. In this classical picture, the chromosphere is sandwiched between the so-called temperature minimum (i.e., the minimum average temperature in the solar atmosphere; about 4000 K) and the hot transition region (with a few tens of thousands kelvin at its lower boundary), above which the temperature drastically increases outwards, reaching million degrees in the solar corona (i.e., the outermost layer of the Sun’s atmosphere). In reality, however, this standard (simple) model does not properly account for the many faces of the non-uniform and dynamic chromosphere. For instance, there also exists extremely cool gas in this highly dynamical region. A variety of heating mechanisms has been suggested to contribute in the energetics of the solar chromosphere. These particularly include propagating waves (of various kinds) often generated in the low photosphere, as well as jets, flares, and explosive events as a result of, for example, magnetic reconnection. However, observations of energy deposition in the chromosphere (particularly from waves) have been rare. The solar chromosphere is dominated by the magnetic fields (where the gas density reduces by more than four orders of magnitude compared to the underlying photosphere; hence, magnetic pressure dominates that of gas) featuring a variety of phenomena including sunspots, plages, eruptions, and elongated structures of different physical properties and/or appearances. The latter have been given different names in the literature, such as fibrils, spicules, filaments, prominences, straws, mottle, surges, or rosette, within which, various sub-categories have also been introduced. Some of these thread-like structures share the same properties, some are speculated to represent the same or completely different phenomena at different atmospheric heights, and some manifest themselves differently in intensity images, depending on properties of the sampling spectral lines. Their origins and relationships to each other are poorly understood. The elongated structures have been suggested to map the magnetic fields in the solar chromosphere; however, that includes challenges of measuring/approximating the chromospheric magnetic fields (particularly in the quiet regions), as well as of estimating the exact heights of formation of the fibrillar structures. The solar chromosphere may thus be described as a challenging, complex plasma-physics lab, in which many of the observed phenomena and physical processes have not yet been fully understood.

2019 ◽  
Vol 629 ◽  
pp. A99 ◽  
Author(s):  
C. J. Díaz Baso ◽  
J. de la Cruz Rodríguez ◽  
S. Danilovic

The topology and dynamics of the solar chromosphere are greatly affected by the presence of magnetic fields. The magnetic field can be inferred by analyzing polarimetric observations of spectral lines. Polarimetric signals induced by chromospheric magnetic fields are, however, particularly weak, and in most cases very close to the detection limit of current instrumentation. Because of this, there are only few observational studies that have successfully reconstructed the three components of the magnetic field vector in the chromosphere. Traditionally, the signal-to-noise ratio of observations has been improved by performing time-averages or spatial averages, but in both cases, some information is lost. More advanced techniques, like principal-component analysis, have also been employed to take advantage of the sparsity of the observations in the spectral direction. In the present study, we use the spatial coherence of the observations to reduce the noise using deep-learning techniques. We designed a neural network that is capable of recovering weak signals under a complex noise corruption (including instrumental artifacts and non-linear post-processing). The training of the network is carried out without a priori knowledge of the clean signals, or an explicit statistical characterization of the noise or other corruption. We only use the same observations as our generative model. The performance of this method is demonstrated on both synthetic experiments and real data. We show examples of the improvement in typical signals obtained in current telescopes such as the Swedish 1 m Solar Telescope. The presented method can recover weak signals equally well no matter what spectral line or spectral sampling is used. It is especially suitable for cases when the wavelength sampling is scarce.


1971 ◽  
Vol 43 ◽  
pp. 279-288 ◽  
Author(s):  
J. Harvey ◽  
D. Hall

Several advantages of near infrared spectral lines for magnetic field measurements are listed. In particular, the 10830 Å multiplet of HeI is well suited for observations of chromospheric magnetic fields.New photoelectric spectroheliograms made with the 10830 Å line reveal a large amount of filamentary fine structure in active regions. This fine structure has important consequences on the interpretation of 10830 Å magnetograms. Except for an association of 10830 Å disk filaments with polarity reversals there is little correlation between absorption features and the 10830 Å longitudinal field. Comparisons of chromospheric and photospheric observations show that the chromospheric field is spatially more diffuse and weaker than the photospheric field.


2000 ◽  
Vol 179 ◽  
pp. 255-258
Author(s):  
K. N. Nagendra ◽  
H. Frisch ◽  
M. Faurobert-Scholl ◽  
F. Paletou

AbstractWe present an application of the PALI (Polarized Approximate Lambda Iteration) method to the resonance scattering in spectral lines formed in the presence of weak magnetic fields. The method is based on an operator perturbation approach, and can efficiently give solutions for oriented vector magnetic fields in the solar atmosphere.


2019 ◽  
Vol 626 ◽  
pp. A86 ◽  
Author(s):  
D. Shulyak ◽  
A. Reiners ◽  
E. Nagel ◽  
L. Tal-Or ◽  
J. A. Caballero ◽  
...  

Context. M dwarfs are known to generate the strongest magnetic fields among main-sequence stars with convective envelopes, but we are still lacking a consistent picture of the link between the magnetic fields and underlying dynamo mechanisms, rotation, and activity. Aims. In this work we aim to measure magnetic fields from the high-resolution near-infrared spectra taken with the CARMENES radial-velocity planet survey in a sample of 29 active M dwarfs and compare our results against stellar parameters. Methods. We used the state-of-the-art radiative transfer code to measure total magnetic flux densities from the Zeeman broadening of spectral lines and filling factors. Results. We detect strong kG magnetic fields in all our targets. In 16 stars the magnetic fields were measured for the first time. Our measurements are consistent with the magnetic field saturation in stars with rotation periods P < 4 d. The analysis of the magnetic filling factors reveal two different patterns of either very smooth distribution or a more patchy one, which can be connected to the dynamo state of the stars and/or stellar mass. Conclusions. Our measurements extend the list of M dwarfs with strong surface magnetic fields. They also allow us to better constrain the interplay between the magnetic energy, stellar rotation, and underlying dynamo action. The high spectral resolution and observations at near-infrared wavelengths are the beneficial capabilities of the CARMENES instrument that allow us to address important questions about the stellar magnetism.


2008 ◽  
Vol 4 (S259) ◽  
pp. 231-232
Author(s):  
Mikhail L. Demidov

AbstractComparison of magnetic fields measurements made in different spectral lines and observatories is an important tool for diagnostics of magnetohydrodynamic conditions in the solar atmosphere. But there is a deficit of information about the dependence of results on detailed position on the solar disk, spatial resolution and time. In this study these issues are discussed in application to the solar large-scale and Sun-as-a-star magnetic fields observations.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


2010 ◽  
Vol 6 (S272) ◽  
pp. 56-61
Author(s):  
Jose H. Groh

AbstractWhile theoretical studies have long suggested a fast-rotating nature of Luminous Blue Variables (LBVs), observational confirmation of fast rotation was not detected until recently. Here I discuss the diagnostics that have allowed us to constrain the rotational velocity of LBVs: broadening of spectral lines and latitude-dependent variations of the wind density structure. While rotational broadening can be directly detected using high-resolution spectroscopy, long-baseline near-infrared interferometry is needed to directly measure the shape of the latitude-dependent photosphere that forms in a fast-rotating star. In addition, complex 2-D radiative transfer models need to be employed if one's goal is to constrain rotational velocities of LBVs. Here I illustrate how the above methods were able to constrain the rotational velocities of the LBVs AG Carinae, HR Carinae, and Eta Carinae.


Sign in / Sign up

Export Citation Format

Share Document