scholarly journals Climate Change Impacts on Agriculture across Africa

Author(s):  
Laura Pereira

Confidence in the projected impacts of climate change on agricultural systems has increased substantially since the first Intergovernmental Panel on Climate Change (IPCC) reports. In Africa, much work has gone into downscaling global climate models to understand regional impacts, but there remains a dearth of local level understanding of impacts and communities’ capacity to adapt. It is well understood that Africa is vulnerable to climate change, not only because of its high exposure to climate change, but also because many African communities lack the capacity to respond or adapt to the impacts of climate change. Warming trends have already become evident across the continent, and it is likely that the continent’s 2000 mean annual temperature change will exceed +2°C by 2100. Added to this warming trend, changes in precipitation patterns are also of concern: Even if rainfall remains constant, due to increasing temperatures, existing water stress will be amplified, putting even more pressure on agricultural systems, especially in semiarid areas. In general, high temperatures and changes in rainfall patterns are likely to reduce cereal crop productivity, and new evidence is emerging that high-value perennial crops will also be negatively impacted by rising temperatures. Pressures from pests, weeds, and diseases are also expected to increase, with detrimental effects on crops and livestock. Much of African agriculture’s vulnerability to climate change lies in the fact that its agricultural systems remain largely rain-fed and underdeveloped, as the majority of Africa’s farmers are small-scale farmers with few financial resources, limited access to infrastructure, and disparate access to information. At the same time, as these systems are highly reliant on their environment, and farmers are dependent on farming for their livelihoods, their diversity, context specificity, and the existence of generations of traditional knowledge offer elements of resilience in the face of climate change. Overall, however, the combination of climatic and nonclimatic drivers and stressors will exacerbate the vulnerability of Africa’s agricultural systems to climate change, but the impacts will not be universally felt. Climate change will impact farmers and their agricultural systems in different ways, and adapting to these impacts will need to be context-specific. Current adaptation efforts on the continent are increasing across the continent, but it is expected that in the long term these will be insufficient in enabling communities to cope with the changes due to longer-term climate change. African famers are increasingly adopting a variety of conservation and agroecological practices such as agroforestry, contouring, terracing, mulching, and no-till. These practices have the twin benefits of lowering carbon emissions while adapting to climate change as well as broadening the sources of livelihoods for poor farmers, but there are constraints to their widespread adoption. These challenges vary from insecure land tenure to difficulties with knowledge-sharing. While African agriculture faces exposure to climate change as well as broader socioeconomic and political challenges, many of its diverse agricultural systems remain resilient. As the continent with the highest population growth rate, rapid urbanization trends, and rising GDP in many countries, Africa’s agricultural systems will need to become adaptive to more than just climate change as the uncertainties of the 21st century unfold.

2021 ◽  
Vol 25 (4) ◽  
pp. 1923-1941
Author(s):  
Patrick Morrissey ◽  
Paul Nolan ◽  
Ted McCormack ◽  
Paul Johnston ◽  
Owen Naughton ◽  
...  

Abstract. Lowland karst aquifers can generate unique wetland ecosystems which are caused by groundwater fluctuations that result in extensive groundwater–surface water interactions (i.e. flooding). However, the complex hydrogeological attributes of these systems, linked to extremely fast aquifer recharge processes and flow through well-connected conduit networks, often present difficulty in predicting how they will respond to changing climatological conditions. This study investigates the predicted impacts of climate change on a lowland karst catchment by using a semi-distributed pipe network model of the karst aquifer populated with output from the high spatial resolution (4 km) Consortium for Small-scale Modelling Climate Lokalmodell (COSMO-CLM) regional climate model simulations for Ireland. An ensemble of projections for the future Irish climate were generated by downscaling from five different global climate models (GCMs), each based on four Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to account for the uncertainty in the estimation of future global emissions of greenhouse gases. The one-dimensional hydraulic/hydrologic karst model incorporates urban drainage software to simulate open channel and pressurised flow within the conduits, with flooding on the land surface represented by storage nodes with the same stage volume properties of the physical turlough basins. The lowland karst limestone catchment is located on the west coast of Ireland and is characterised by a well-developed conduit-dominated karst aquifer which discharges to the sea via intertidal and submarine springs. Annual above ground flooding associated with this complex karst system has led to the development of unique wetland ecosystems in the form of ephemeral lakes known as turloughs; however, extreme flooding of these features causes widespread damage and disruption in the catchment. This analysis has shown that mean, 95th and 99th percentile flood levels are expected to increase by significant proportions for all future emission scenarios. The frequency of events currently considered to be extreme is predicted to increase, indicating that more significant groundwater flooding events seem likely to become far more common. The depth and duration of flooding is of extreme importance, both from an ecological perspective in terms of wetland species distribution and for extreme flooding in terms of the disruption to homes, transport links and agricultural land inundated by flood waters. The seasonality of annual flooding is also predicted to shift later in the flooding season, which could have consequences in terms of ecology and land use in the catchment. The investigation of increasing mean sea levels, however, showed that anticipated rises would have very little impact on groundwater flooding due to the marginal impact on ebb tide outflow volumes. Overall, this study highlights the relative vulnerability of lowland karst systems to future changing climate conditions, mainly due to the extremely fast recharge which can occur in such systems. The study presents a novel and highly effective methodology for studying the impact of climate change in lowland karst systems by coupling karst hydrogeological models with the output from high-resolution climate simulations.


Author(s):  
Ganiyu Titilope Oyerinde ◽  
Fabien C.C. Hountondji ◽  
Agnide E. Lawin ◽  
Ayo J. Odofin ◽  
Abel Afouda ◽  
...  

Climate simulations in West Africa have been attributed with large uncertainties. Global climate projections are not consistent with changes in observations at the regional or local level of the Niger basin, making management of hydrological projects in the basin uncertain. This study evaluates the potential of using the quantile mapping bias correction to improve the Coupled Model Intercomparison Project (CMIP5) outputs for use in hydrology impact studies. Rainfall and temperature projections from 8 CMIP5 Global Climate Models (GCM) were bias corrected using the quantile mapping approach. Impacts of climate change was evaluated with bias corrected rainfall, temperature and potential evapotranspiration (PET). The IHACRES hydrological model was adapted to the Niger basin and used to simulate impacts of climate change on discharge under present and future conditions. Bias correction significantly improved the accuracy of rainfall and temperature simulations compared to observations. Nash coefficient (NSE) for monthly rainfall comparisons of 8 GCMs to the observed was improved by bias correction from 0.69 to 0.84. The standard deviations among the 8 GCM rainfall data were significantly reduced from 0.13 to 0.03. Increasing rainfall, temperature, PET and river discharge were projected for all GCMs used in this study under the RCP8.5 scenario. These results will help improving projections and contribute to the development of sustainable climate change adaptation strategies.


“We regard the recent science –based consensual reports that climate change is, to a large extend, caused by human activities that emit green houses as tenable, Such activities range from air traffic, with a global reach over industrial belts and urban conglomerations to local small, scale energy use for heating homes and mowing lawns. This means that effective climate strategies inevitably also require action all the way from global to local levels. Since the majority of those activities originate at the local level and involve individual action, however, climate strategies must literally begin at home to hit home.”


2021 ◽  
Vol 13 (4) ◽  
pp. 2415
Author(s):  
Carla Johnston ◽  
Andrew Spring

Communities in Canada’s Northwest Territories (NWT) are at the forefront of the global climate emergency. Yet, they are not passive victims; local-level programs are being implemented across the region to maintain livelihoods and promote adaptation. At the same time, there is a recent call within global governance literature to pay attention to how global policy is implemented and affecting people on the ground. Thinking about these two processes, we ask the question: (how) can global governance assist northern Indigenous communities in Canada in reaching their goals of adapting their food systems to climate change? To answer this question, we argue for a “community needs” approach when engaging in global governance literature and practice, which puts community priorities and decision-making first. As part of a collaborative research partnership, we highlight the experiences of Ka’a’gee Tu First Nation, located in Kakisa, NWT, Canada. We include their successes of engaging in global network building and the systemic roadblock of lack of formal land tenure. Moreover, we analyze potential opportunities for this community to engage with global governance instruments and continue connecting to global networks that further their goals related to climate change adaptation and food sovereignty.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-25
Author(s):  
Wadii Snaibi

AbstractThe high plateaus of eastern Morocco are already suffering from the adverse impacts of climate change (CC), as the local populations’ livelihoods depend mainly on extensive sheep farming and therefore on natural resources. This research identifies breeders’ perceptions about CC, examines whether they correspond to the recorded climate data and analyses endogenous adaptation practices taking into account the agroecological characteristics of the studied sites and the difference between breeders’ categories based on the size of owned sheep herd. Data on perceptions and adaptation were analyzed using the Chi-square independence and Kruskal-Wallis tests. Climate data were investigated through Mann-Kendall, Pettitt and Buishand tests.Herders’ perceptions are in line with the climate analysis in term of nature and direction of observed climate variations (downward trend in rainfall and upward in temperature). In addition, there is a significant difference in the adoption frequency of adaptive strategies between the studied agroecological sub-zones (χ2 = 14.525, p <.05) due to their contrasting biophysical and socioeconomic conditions, as well as among breeders’ categories (χ2 = 10.568, p < .05) which attributed mainly to the size of sheep flock. Policy options aimed to enhance local-level adaptation should formulate site-specific adaptation programs and prioritise the small-scale herders.


SAGE Open ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 215824401986420 ◽  
Author(s):  
Asnarulkhadi Abu Samah ◽  
Hayrol Azril Mohamed Shaffril ◽  
Azimi Hamzah ◽  
Bahaman Abu Samah

This study aims to examine the influence of individual differences on the small-scale fishermen’s climate change adaptation practices toward climate change. This is a descriptive correlational study on 400 small-scale fishermen living in four climate change–affected areas in Malaysia, which were selected based on a multistage cluster sampling. In conclusion, it was found that age, income, and fishing experience recorded a significant relationship with climate change adaptation practices, whereas their household size did not yield any relationship with the adaptation practices. Furthermore, a number of small-scale fishermen who use fisheries technologies, have alternative jobs, and possess higher education have recorded better climate change adaptation practices compared with nonusers, full-timers, and less educated fishermen. Several recommendations were made to assist the concerned parties in developing better adaptation strategies that are fitted to the fishermen’s needs, interests, and abilities.


2019 ◽  
Vol 11 (3) ◽  
pp. 647 ◽  
Author(s):  
Pablo Martinez-Juarez ◽  
Aline Chiabai ◽  
Cristina Suárez ◽  
Sonia Quiroga

Adapting to expected impacts of climate change is a task shared by multiple institutions and individuals, but much of this work falls over local and regional authorities, which has made them experts over the issue. At the same time, adaptation to climate change has been a research interest in different academic fields; while private companies provide research and development efforts on the issue. Views from perspectives may contain common ground and discrepancies, but benefits from the discussion may differ among these three sectors. This study shows the application of collaborative approaches to analyze impacts and adaptation measures at a local level. A stakeholder workshop was held in the city of Bilbao to discuss impacts of climate change and adaptation in the local context of the Basque Country. The contributions were proposed on three axes: impacts from climate change, good practices proposed or already in action, and costs and benefits derived from those strategies. Participants were asked to rank a series of measures and practices extracted from their previous inputs. These measures were analyzed after applying bootstrapping techniques, according to the perceived costs and benefits assigned to each of the grouped measures and practices. Participants estimated that groups containing green adaptation measures and those that had potentially positive impacts over climate change mitigation were the most efficient measures, as reduced costs combined with high benefits could lead to win–win adaptation strategies, while grey infrastructures were seen as providing high benefits at high costs.


Sign in / Sign up

Export Citation Format

Share Document