1. Beginnings

2021 ◽  
pp. 1-13
Author(s):  
Raymond T. Pierrehumbert

‘Beginnings’ discusses the general processes that form planetary systems, particularly the Solar System. Most of the Universe is made of a mysterious substance called ‘dark matter’, and an even more mysterious substance called ‘dark energy’. After the birth of the Universe in the Big Bang, the tiny bits of stardust which have accumulated contain the heavier elements (baryonic matter) that make it possible to form beings like ourselves, and the planets on which we live. We mustn't forget the importance of the formation of protostars, as well as gas and ice giant planets, the evolution of the proto-Sun, and the formation of inner rocky planets.

2021 ◽  
pp. 47-75
Author(s):  
Raymond T. Pierrehumbert

‘What are planets made of?’ assesses what planets are made of, beginning by looking at the life cycle of stars, and the kinds of stars which populate the Universe. Although the first stars of the Universe could not have formed planetary systems, the process did not take long to get under way. The Milky Way galaxy formed not long after the Big Bang and has been building its stock of heavy elements ever since. Thus, our Solar System incorporates ingredients from a mix of myriad expired stars, most of which have been processed multiple times through short-lived stars.


2016 ◽  
Author(s):  
Barbara Ryden

This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.


2021 ◽  
Author(s):  
Carlos A. Melendres

Abstract We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity. From cooling data on the universe, we constructed a thermodynamic phase diagram of composition of the universe, from which we obtained a correlation between dark energy and the energy of space. Using Friedmann’s equations, our Quantum Space model fitted well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang. It accelerated due to the dominance of dark energy at 7.25 x 109 years, in good agreement with BOSS measurements. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during reionization.


2002 ◽  
Vol 10 (2) ◽  
pp. 221-236 ◽  
Author(s):  
ANDREW R. LIDDLE

The 20th century saw the establishment of the first quantitative theory seeking to describe the behaviour of the Universe as a whole – the Big Bang. This sets up a framework within which there has been great success in interpreting a wide range of observations, including the abundances of light chemical elements, the existence and spectrum of the cosmic microwave radiation, and the formation and evolution of galaxies. At the end of the 20th century, the surprising conclusion of the Big Bang theory is that 95% of the Universe is made of two different unknown types of material whose nature remains unclear: dark matter and dark energy. Needless to say, this is a major challenge for science. At the beginning of the 21st century, cosmology appears poised to enter a high-precision era, where the key quantities of cosmology will be determined to two or more significant figures. If cosmologists are on the right track, this will confirm the existence of dark matter and dark energy; if not, it will force us to revise our current picture of the Universe. Either way, the prospect is for exciting years ahead in cosmology.


2021 ◽  
pp. 53-65
Author(s):  
Gianfranco Bertone

In the second part of the book, I argue that the four biggest mysteries of modern physics and astronomy—dark matter, dark energy, black holes, and the Big Bang—sink their roots into the physics of the infinitely small. And I argue that gravitational waves may shed new light on, and possibly solve, each of these four mysteries. I start here by introducing the problem of dark matter, the mysterious substance that permeates the Universe at all scales and describe the gravitational waves observations that might soon elucidate its nature. The next time you see the Sun shining in the sky, consider this: what blinds your eyes and warms your skin is an immense nuclear furnace, which transforms millions of tons of nuclear fuel into energy every second. And when you contemplate the night sky, try to visualize it for what it essentially is: an endless expanse of colossal natural reactors, forging the atoms that we, and everything that surrounds us, are made of.


Author(s):  
Geoff Cottrell

Matter: A Very Short Introduction explains matter—the stuff of which your body and the universe is made—from elementary particles, to atoms, humans, planets, up to the superclusters of galaxies. Familiar solids, liquids, and gases are described, as well as plasmas, exotic forms of quantum matter, and antimatter. This VSI outlines the quantum properties of atoms, the fundamental forces of nature, and how the different forms of matter arise. The origins of matter are traced to the Big Bang, 13.8 billion years ago. However, all the familiar normal matter constitutes only 5% of the matter that exists. The remainder comes in two mysterious forms: dark matter and dark energy, which are discussed.


Author(s):  
Carlos Melendres

We present a thermodynamic approach in modeling the evolution of the universe based on a theory that space consists of energy quanta, the spaceons. From wave-particle duality, they can be treated as an ideal gas. The model is similar to the Big Bang but without Inflation. It provides an insight into the nature of dark energy and dark matter, and an explanation for the accelerated expansion of the universe. The universe started from an atomic size volume of spaceons at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred resulting in the formation of fundamental particles, and matter. These nucleate and grow into stars, galaxies, and clusters due to the action of gravity. From the cooling curve of the universe we constructed a thermodynamic phase diagram of cosmic composition, from which we obtained the correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The dominance of dark energy started at 7.25 x 109 years, in good agreement with BOSS measurements. The expansion of space is attributed to a scalar quantum space field. Dark Matter is identified as a plasma form of matter similar to that which existed during the photon epoch, prior to recombination. The thermodynamics of expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang; it accelerated thereafter. A negative pressure for Dark Energy is required to sustain the latter. This is consistent with the theory of General Relativity and the law of conservation of energy. We propose a mechanism for the acceleration as due to consolidation of matter forming Dark Energy Stars (DES) and other compact objects. The resulting reduction in gravitational potential energy feeds back energy for the expansion. Space will continue to expand and dark energy will undergo phase transition to a Bose-Einstein condensate, a superfluid form of matter. Self-gravitation can cause a bounce and start a new Big Bang. We show how the interplay of gravitational and space forces leads to a cyclic, maybe eternal, universe.


Author(s):  
John Chambers ◽  
Jacqueline Mitton

This chapter analyzes how humans owe their existence to the rich variety of chemical elements that exist in the universe. The solar system contains hydrogen to power the Sun; iron and silicon to build rocky planets; and carbon, nitrogen, and oxygen to form the building blocks of life. Almost 100 elements occur naturally in the solar system in varying amounts. Some, like hydrogen, oxygen, and iron, are abundant everywhere. Others, like gold, silver, and uranium, are much less common. The mixture of elements has remained almost constant since the solar system formed, apart from changes deep in the Sun's interior. The chapter shows how the composition of the solar system was shaped by events elsewhere in the universe dating back to the Big Bang itself.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Sign in / Sign up

Export Citation Format

Share Document