The Big Bang: status and prospects

2002 ◽  
Vol 10 (2) ◽  
pp. 221-236 ◽  
Author(s):  
ANDREW R. LIDDLE

The 20th century saw the establishment of the first quantitative theory seeking to describe the behaviour of the Universe as a whole – the Big Bang. This sets up a framework within which there has been great success in interpreting a wide range of observations, including the abundances of light chemical elements, the existence and spectrum of the cosmic microwave radiation, and the formation and evolution of galaxies. At the end of the 20th century, the surprising conclusion of the Big Bang theory is that 95% of the Universe is made of two different unknown types of material whose nature remains unclear: dark matter and dark energy. Needless to say, this is a major challenge for science. At the beginning of the 21st century, cosmology appears poised to enter a high-precision era, where the key quantities of cosmology will be determined to two or more significant figures. If cosmologists are on the right track, this will confirm the existence of dark matter and dark energy; if not, it will force us to revise our current picture of the Universe. Either way, the prospect is for exciting years ahead in cosmology.

2021 ◽  
Author(s):  
Carlos A. Melendres

Abstract We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity. From cooling data on the universe, we constructed a thermodynamic phase diagram of composition of the universe, from which we obtained a correlation between dark energy and the energy of space. Using Friedmann’s equations, our Quantum Space model fitted well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang. It accelerated due to the dominance of dark energy at 7.25 x 109 years, in good agreement with BOSS measurements. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during reionization.


2021 ◽  
pp. 1-13
Author(s):  
Raymond T. Pierrehumbert

‘Beginnings’ discusses the general processes that form planetary systems, particularly the Solar System. Most of the Universe is made of a mysterious substance called ‘dark matter’, and an even more mysterious substance called ‘dark energy’. After the birth of the Universe in the Big Bang, the tiny bits of stardust which have accumulated contain the heavier elements (baryonic matter) that make it possible to form beings like ourselves, and the planets on which we live. We mustn't forget the importance of the formation of protostars, as well as gas and ice giant planets, the evolution of the proto-Sun, and the formation of inner rocky planets.


2021 ◽  
pp. 53-65
Author(s):  
Gianfranco Bertone

In the second part of the book, I argue that the four biggest mysteries of modern physics and astronomy—dark matter, dark energy, black holes, and the Big Bang—sink their roots into the physics of the infinitely small. And I argue that gravitational waves may shed new light on, and possibly solve, each of these four mysteries. I start here by introducing the problem of dark matter, the mysterious substance that permeates the Universe at all scales and describe the gravitational waves observations that might soon elucidate its nature. The next time you see the Sun shining in the sky, consider this: what blinds your eyes and warms your skin is an immense nuclear furnace, which transforms millions of tons of nuclear fuel into energy every second. And when you contemplate the night sky, try to visualize it for what it essentially is: an endless expanse of colossal natural reactors, forging the atoms that we, and everything that surrounds us, are made of.


Author(s):  
Geoff Cottrell

Matter: A Very Short Introduction explains matter—the stuff of which your body and the universe is made—from elementary particles, to atoms, humans, planets, up to the superclusters of galaxies. Familiar solids, liquids, and gases are described, as well as plasmas, exotic forms of quantum matter, and antimatter. This VSI outlines the quantum properties of atoms, the fundamental forces of nature, and how the different forms of matter arise. The origins of matter are traced to the Big Bang, 13.8 billion years ago. However, all the familiar normal matter constitutes only 5% of the matter that exists. The remainder comes in two mysterious forms: dark matter and dark energy, which are discussed.


Author(s):  
Carlos Melendres

We present a thermodynamic approach in modeling the evolution of the universe based on a theory that space consists of energy quanta, the spaceons. From wave-particle duality, they can be treated as an ideal gas. The model is similar to the Big Bang but without Inflation. It provides an insight into the nature of dark energy and dark matter, and an explanation for the accelerated expansion of the universe. The universe started from an atomic size volume of spaceons at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred resulting in the formation of fundamental particles, and matter. These nucleate and grow into stars, galaxies, and clusters due to the action of gravity. From the cooling curve of the universe we constructed a thermodynamic phase diagram of cosmic composition, from which we obtained the correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The dominance of dark energy started at 7.25 x 109 years, in good agreement with BOSS measurements. The expansion of space is attributed to a scalar quantum space field. Dark Matter is identified as a plasma form of matter similar to that which existed during the photon epoch, prior to recombination. The thermodynamics of expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang; it accelerated thereafter. A negative pressure for Dark Energy is required to sustain the latter. This is consistent with the theory of General Relativity and the law of conservation of energy. We propose a mechanism for the acceleration as due to consolidation of matter forming Dark Energy Stars (DES) and other compact objects. The resulting reduction in gravitational potential energy feeds back energy for the expansion. Space will continue to expand and dark energy will undergo phase transition to a Bose-Einstein condensate, a superfluid form of matter. Self-gravitation can cause a bounce and start a new Big Bang. We show how the interplay of gravitational and space forces leads to a cyclic, maybe eternal, universe.


Author(s):  
Francisco César de Sá Barreto ◽  
Luiz Paulo Ribeiro Vaz ◽  
Gabriel Armando Pellegatti Franco

The standard cosmological model suggests that after the “Big Bang”, 14 billion of years ago, the universe entered a period of expansion and cooling. In the first one millionth of a second appear quarks, glúons, electrons and neutrinos, followed by the appearance of protons and neutrons. In this paper, we describe the “cosmic battle” between gravitation and energy, responsible for the lighter chemical elements and the formation of the stars. We describe the thermodynamics of irreversible processes of systems which are far away from equilibrium, a route that is followed by the universe, seen as a living system.


2012 ◽  
Vol 11 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Marcelo Gleiser

AbstractThe history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944024 ◽  
Author(s):  
Arthur E. Fischer

In this paper, we show how the [Formula: see text]CDM (Lambda Cold Dark Matter) Standard Model for cosmology can be extrapolated backwards through the big bang into the infinite past to yield an all-time model of the universe with scale factor given by [Formula: see text] defined and continuous for all [Formula: see text] and smooth ([Formula: see text] and satisfying Friedmann’s equation for all [Formula: see text]. At the big bang [Formula: see text], there is a nondifferentiable cusp singularity and our model shows some details of the behavior of the universe at this singularity. Our model is a zero-energy single-bounce model and an examination of the [Formula: see text]-plot of the [Formula: see text] level curve gives critical information about the initial and final states of the universe, about the evolution of the universe, and about the behavior of the universe at the big bang. Our results show that much can be said classically about the birth, big bang and death of the universe before one needs to reach for quantum gravitational effects.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


Sign in / Sign up

Export Citation Format

Share Document