scholarly journals Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines

2007 ◽  
Vol 86 (5) ◽  
pp. 1539-1547 ◽  
Author(s):  
Shih-Ping Hsu ◽  
Ming-Shiou Wu ◽  
Chih-Ching Yang ◽  
Kuo-Chin Huang ◽  
Shaw-Yih Liou ◽  
...  
Author(s):  
Gordon M. Lowe ◽  
Kalliopi Gana ◽  
Khalid Rahman

Abstract: Leukocytes play a vital role in the host defence and inflammatory systems, the latter being responsible for the pathogenesis of a wide spectrum of acute and chronic diseases. Green tea is a popular beverage, which is consumed worldwide and its active ingredients are epicatechin derivatives, which possess distinct anti-inflammatory properties. The purpose of this study was to investigate if a green tea extract could enhance leukocyte function in humans.: Volunteers were asked to take 300 mg of the green tea extract daily for 14 days and the capacity of circulating leukocytes to release both myeloperoxidase and lactoferrin was assessed. Whole blood from volunteers was stimulated with the bacterial peptide Formyl-Methionine-Leucine-Phenylalanine (fMet-Leu-Phe). Myeloperoxidase an enzyme that converts hydrogen peroxide to hypochlorous acid and is stored and secreted from the granules of neutrophils and monocytes and was measured as well as lactoferrin which is an iron-binding protein stored and secreted from the neutrophils. In conjunction the antioxidant capacity of the blood of the volunteers was also determined using a chemiluminescence method that measures the capacity of plasma to scavenge superoxide.: After 14 days of treatment there was a significant increase in the release of myeloperoxidase and lactoferrin when whole blood was stimulated with fMet-Leu-Phe (p<0.05), which activates a number of leukocytes including mature neutrophils and monocytes. This was mirrored by a significant increase in the total antioxidant status after 14 days of green tea ingestion (p0.05). After the “wash-out” period of 4 weeks, all parameters were consistent with those observed at the start of the trial (day 0). Treatment with the green tea extract also caused a slight but non-significant decrease in the number of circulating leukocytes, but the counts remained within published “normal” ranges for healthy human adults.: This study indicates that a green tea extract when taken as a dietary supplement for 14 days can increase the leukocyte activity and the total plasma antioxidant status and may have role to play in the prevention of inflammatory disease.


2005 ◽  
Vol 28 (11) ◽  
pp. 1251-1256 ◽  
Author(s):  
Yun -Mi Jeong ◽  
Yeong -Gon Choi ◽  
Dong -Seok Kim ◽  
Seo -Hyoung Park ◽  
Jin -A Yoon ◽  
...  

Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
A Ali ◽  
X Yang ◽  
Q Shi ◽  
J Greenhaw ◽  
WF Salminen

2017 ◽  
Vol 23 (4) ◽  
pp. 35-41
Author(s):  
Jeong Hee Park ◽  
Hang Yeon Jeong ◽  
Jeong Yong Cho ◽  
Jae Hak Moon

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lisni Noraida Waruwu ◽  
Maria Bintang ◽  
Bambang Pontjo Priosoeryanto

Green tea (Camellia sinensis) is one of traditional plants that have the potential as an anticancer. The sample used in this research commercial green tea extract. The purpose of this study was to test the antiproliferation activity of green tea extract on breast cancer cell MCM-B2 in vitro. Green tea extract fractionated using three solvents, ie water, ethanol 70%, and n-hexane. Extract and fraction of green tea water have value Lethality Concentration 50 (LC50) more than 1000 ppm. The fraction of ethanol 70% and n-hexane had an LC50 value of 883.48 ppm and 600.56 ppm, respectively. The results of the phytochemical screening of green tea extract are flavonoids, tannins, and saponins, while the phytochemical screening results of n-hexane fraction are flavonoids and tannins. Antiproliferation activity was tested on breast cancer cells MCM-B2 and normal cells Vero by trypan blue staining method. The highest MCM-B2 cell inhibitory activity was achieved at a concentration of 13000 ppm green tea extract and 1000 ppm of n-hexane fraction, 59% and 59%, respectively. The extract and n-hexane fraction of green tea are not toxic to normal Vero cells characterized by not inhibiting normal cell proliferation. Keywords: antiproliferative, cancer cell MCM-B2, commercial green tea, cytotoxicity


2020 ◽  
Vol 21 (1) ◽  
pp. 31-35
Author(s):  
Basma El-Desoky ◽  
Shaimaa El-Sayed ◽  
El-Said El-Said

Objective: Investigating the effect of green tea extract (GTE) on the testicular damage induced by cadmium chloride CdCl2 in male rats. Design: Randomized controlled study. Animals: 40 male Wistar rats. Procedures: Rats were randomly divided into four groups: A) control group (each rat daily received pellet diet); B) GTE group each rat daily received pellet diet as well as 3 ml of 1.5 % w/v GTE, C) CdCl2 group each rat was I/P injected a single dose of 1 mg/kg CdCl2, then daily received pellet diet, and D) CdCl2+GTE group each rat was I/P injected a single dose of 1 mg/kg CdCl2 then daily received pellet diet as well as 3 ml of 1.5 % w/v GTE. After 30 days, blood samples were collected for hormonal assays (testosterone, FSH, and LH). In addition, both testes were collected; one of them was used for quantification of 17-beta hydroxysteroid dehydrogenase III (17β-HSDIII) gene expression using a real-time PCR. The other testis was used for determination of catalase and reduced glutathione; GSH, Nitric oxide (NO) and malondialdehyde (MDA) levels. Results: CdCl2 decreased serum testosterone levels and its synthesis pathway (17β-HSDIII testicular gene expression). While antioxidants catalase and GSH were reduced, oxidants MDA were enriched in the testes of CdCl2-poisoned rats. This CdCl2-promoted testicular dysfunction was corrected via the administration of GTE to male rats. Conclusion and clinical relevance: GTE could be used as a remedy for protecting against CdCl2-induced testicular damage in male rats.


Sign in / Sign up

Export Citation Format

Share Document