scholarly journals Discordant Partial Thromboplastin Time (PTT) vs Anti-Xa Heparin Activity

2018 ◽  
Vol 151 (4) ◽  
pp. 424-432
Author(s):  
Jenna Khan ◽  
Wayne L Chandler
Blood ◽  
1968 ◽  
Vol 31 (3) ◽  
pp. 369-380 ◽  
Author(s):  
HUSSAIN I. SABA ◽  
HAROLD R. ROBERTS ◽  
JOHN C. HERION

Abstract The lysosomal cationic proteins (LCP) of rabbit polymorphonuclear leukocytes have previously been shown to inhibit the formation of intrinsic prothrombin activator. That they also have anti-heparin activity is now demonstrated in a thrombin-plasma clotting system, the partial thromboplastin time test and the thromboplastin generation test. In thrombin clotting systems that contain antithrombin, LCP exhibit a clot-promoting effect. This activity does not appear to represent inhibition of antithrombin II or III or potentiation of the enzymatic action of thrombin. Rather it may be a direct effect on fibrinogen, or the reactions leading to fibrin formation.


1991 ◽  
Vol 66 (02) ◽  
pp. 213-217 ◽  
Author(s):  
Arthur P Bode ◽  
William J Castellani ◽  
Edna D Hodges ◽  
Susan Yelverton

SummaryThe effect of lysed platelets on the activated coagulation time (ACT) was studied in heparinized whole blood during titration with protamine. Frozen-thawed washed platelet suspension, or a chromatography fraction thereof, or autologous frozen-thawed platelet-rich plasma was added in various dilutions to freshly drawn blood anticoagulated with 3,000 USP units/1 heparin. After a 10 min incubation, the amount of protamine needed to restore the ACT to baseline ("protamine titration dose") was determined. We found that the protamine titration dose decreased in proportion to the amount of lysed platelet material added; expressed as a percentage of the total number of platelets present, each unit increase in lysed platelets produced a 1.7% ±0.8 (SD) reduction in the protamine dose needed to normalize the ACT. A heparin activity assay showed that this effect was not due to antiheparin activity of lysed platelets such as platelet factor 4 (PF4). Our data indicate that the procoagulant activity of platelet membranes reduced the sensitivity of the ACT to heparin. These findings suggest that membranous platelet microparticles may cause an inaccurate calculation, based on the ACT, of a protamine dose to reverse heparin anticoagulation in cardiopulmonary bypass procedures.


1990 ◽  
Vol 63 (01) ◽  
pp. 016-023 ◽  
Author(s):  
A M H P van den Bessekaar ◽  
J Meeuwisse-Braun ◽  
R M Bertina

SummaryFive different APTT reagents, two amidolytic anti-ITa assays, one amidoiytic anti-Xa assay, and one coagulometric anti-Xa/ anti-IIa assay were used to assess the effect of heparin in patients treated for venous thromboembolic disease. Good correlations were observed between lug-transformed APYE> determined with the various reagents (correlation coefficients: 0.92-0.96).Nevertheless there were important differences in the slopes of the lines of relationship between the APTT reagents.Good correlations were observed between the anti-Xa and anti-IIa assay results (correlation coefficients: 0.92-0.97). However, the amidolytic anti-Xa activity was significantly higher (p <0.001) than the two amidolytic anti-IIa activities. Less good correlations were observed between the log-transformed APTTs and the anti-Xa or anti-IIa activities (correlation coefficients: 0.64-0.78). The correlations were improved by transforming the APTT into APTT-ratio, i.e. the ratio of the patient’s APTT to the same patient’s APTT after removal of heparin from the plasma sample by means of ECTEOLA-cellulose treatment. The correlation coefficients of log (AFTT-ratio) with anti-Xa or anti-IIa ranged from 0.76 to 0.87.For both APTT and amidolytic heparin assay, the response to in vitro heparin was different from the response to ex vivo heparin.Therefore, equivalent therapeutic ranges should be assessed by using ex vivo samples rather than in vitro heparin. Because of the response differences between the APTT reagents, it is not adequate to define a therapeutic range for heparin therapy without specification of the reagent.


1994 ◽  
Vol 72 (05) ◽  
pp. 685-692 ◽  
Author(s):  
Michael T Nurmohamed ◽  
René J Berckmans ◽  
Willy M Morriën-Salomons ◽  
Fenny Berends ◽  
Daan W Hommes ◽  
...  

SummaryBackground. Recombinant hirudin (RH) is a new anticoagulant for prophylaxis and treatment of venous and arterial thrombosis. To which extent the activated partial thromboplastin time (APTT) is suitable for monitoring of RH has not been properly evaluated. Recently, a capillary whole blood device was developed for bed-side monitoring of the APTT and it was demonstrated that this device was suitable to monitor heparin therapy. However, monitoring of RH was not evaluated.Study Objectives. To evaluate in vitro and ex vivo the responsiveness and reproducibility for hirudin monitoring of the whole blood monitor and of plasma APTT assays, which were performed with several reagents and two conventional coagulometers.Results. Large interindividual differences in hirudin responsiveness were noted in both the in vitro and the ex vivo experiments. The relationship between the APTT, expressed as clotting time or ratio of initial and prolonged APTT, and the hirudin concentration was nonlinear. A 1.5-fold increase of the clotting times was obtained at 150-200 ng/ml plasma. However, only a 2-fold increase was obtained at hirudin levels varying from 300 ng to more than 750 ng RH/ml plasma regardless of the assays. The relationship linearized upon logarithmic conversion of the ratio and the hirudin concentration. Disregarding the interindividual differences, and presuming full linearity of the relationship, all combinations were equally responsive to hirudin.Conclusions. All assays were equally responsive to hirudin. Levels up to 300 ng/ml plasma can be reliably estimated with each assay. The manual device may be preferable in situations where rapid availability of test results is necessary.


1963 ◽  
Vol 10 (01) ◽  
pp. 071-080 ◽  
Author(s):  
L. B Jaques ◽  
C Mary Jaques

SummaryPreparations were made of rabbit liver globulin by the method of Jaques for heparinase and their effect on heparin studied. The results confirmed the observations of a progressive loss of anticoagulant activity with globulin in 0.9% saline, of a loss of metachromatic activity after phenol extraction and the reversal of the latter by alkali. The latter observations were due to the solubility in phenol of heparin on combination with protein. With suitable preparations, a decrease in anticoagulant activity without decrease in metachromatic activity was observed, i.e. conversion of heparin to uroheparin. Loss of heparin due to combination with protein and resulting precipitation, solubility in phenol, etc. followed a protein pH-dissociation curve. Loss of heparin anticoagulant activity due to heparinase was maximal at pH 5.4. No loss of heparin occurred at pH values more acid than 5 or more alkaline than 7.


1970 ◽  
Vol 23 (02) ◽  
pp. 386-404 ◽  
Author(s):  
G Müller-Berghaus ◽  
H. G Lasch

SummaryThe role of Hageman factor in triggering intravascular coagulation has been studied in rabbits injected intravenously with Liquoid. Besides changes of coagulation parameters characteristic of consumption coagulopathy (e.g. decrease in platelet counts, fibrinogen levels, factor V activity), a pronounced drop in Hageman factor activity was observed after injection of Liquoid. Likewise, the partial thromboplastin time became prolonged.The activation of Hageman factor in vivo could be prevented by intravenous infusion of lysozyme. Twenty min after starting the lysozyme infusion, the partial thromboplastin time became prolonged from a mean of 29 sec to 108 sec. Animals infused with lysozyme and injected with a lethal dose of Liquoid did not develop a consumption coagulopathy. In the same manner, none of 10 animals treated with lysozyme developed the generalized Shwartzman reaction, whereas in the control group 19 out of 20 animals showed fibrin thrombi in the glomerular capillaries.From the present study it may be concluded that the intravascular coagulation process after intravenous injection of Liquoid is triggered by Hageman factor activation.


1971 ◽  
Vol 25 (03) ◽  
pp. 391-404 ◽  
Author(s):  
J.D Geratz

Summary1. Aromatic diamidines which are potent inhibitors of trypsin possess a marked inhibitory effect on the clotting activity of human thrombin and on the prothrombin time and partial thromboplastin time of human plasma. They also block the contact activation phase of the coagulation process. The strongest inhibitor among the compounds tested was M & B 4596 which was followed in second place by pentamidine.2. Pentamidine was 10 times more active than ε-ACA in impeding streptokinase-induced lysis of human plasma clots. It was 100-200 times stronger than ε-ACA in inhibiting the activation of bovine plasminogen by activators formed from the interaction between streptokinase and either human plasmin(ogen) or human plasma.3. The prothrombin time and partial thromboplastin time of canine plasma were less susceptible to inhibition by pentamidine than the same tests on human plasma. Clot lysis in the canine system was inhibited by pentamidine to a similar degree as in the human system. After intravenous injection of pentamidine in the dog there occurred the expected prolongation of the partial thromboplastin time and of the clot lysis time.


Sign in / Sign up

Export Citation Format

Share Document