scholarly journals The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season

2018 ◽  
Vol 124 (4) ◽  
pp. 567-579 ◽  
Author(s):  
Matthew Haworth ◽  
Giovanni Marino ◽  
Ezio Riggi ◽  
Giovanni Avola ◽  
Cecilia Brunetti ◽  
...  

Abstract Background and Aims The development of Arundo donax as a biomass crop for use on drought-prone marginal lands in areas with warm to hot climates is constrained by the lack of variation within this species. We investigated the effect of morphological and physiological variation on growth and tolerance to drought under field conditions in three ecotypes of A. donax collected from habitats representing a climate gradient: a pre-desert in Morocco, a semi-arid Mediterranean climate in southern Italy and a warm sub-humid region of central Italy. Methods The three A. donax ecotypes were grown under irrigated and rain-fed conditions in a common garden field trial in a region with a semi-arid Mediterranean climate. Physiological and morphological characteristics, and carbohydrate metabolism of the ecotypes were recorded to establish which traits were associated with yield and/or drought tolerance. Key Results Variation was observed between the A. donax ecotypes. The ecotype from the most arid habitat produced the highest biomass yield. Stem height and the retention of photosynthetic capacity later in the year were key traits associated with differences in biomass yield. The downregulation of photosynthetic capacity was not associated with changes in foliar concentrations of sugars or starch. Rain-fed plants maintained photosynthesis and growth later in the year compared with irrigated plants that began to senescence earlier, thus minimizing the difference in yield. Effective stomatal control prevented excessive water loss, and the emission of isoprene stabilized photosynthetic membranes under drought and heat stress in A. donax plants grown under rain-fed conditions without supplementary irrigation. Conclusions Arundo donax is well adapted to cultivation in drought-prone areas with warm to hot climates. None of the A. donax ecotypes exhibited all of the desired traits consistent with an ‘ideotype’. Breeding or genetic (identification of quantitative trait loci) improvement of A. donax should select ecotypes on the basis of stem morphology and the retention of photosynthetic capacity.

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 679
Author(s):  
Danilo Scordia ◽  
Giovanni Scalici ◽  
John Clifton-Brown ◽  
Paul Robson ◽  
Cristina Patanè ◽  
...  

Predictions of future climate scenarios indicate that yields from perennial biomass crops (PBCs) growing in the Mediterranean region are likely to decline due to prolonged drought. Among PBCs, Miscanthus grasses with C4 photosynthesis combine high yield potentials and water use efficiencies. However, the standard commercial clone M. x giganteus (Mxg), with minimal stomatal regulation, is too sensitive to drought for reliable yields in the Mediterranean regions. This paper screened a diverse panel of thirteen Miscanthus genotypes (M. sinensis, M. floridulus, M. sacchariflorus and Mxg) to identify which types could maximize yield under summer drought conditions typical in the South Mediterranean climate. In the second growing season, significant differences were observed for plant height (from 63 to 185 cm), stem number (from 12 to 208 stems plant−1), biomass yield (from 0.17 to 6.4 kg DM plant−1) and whole crop water use efficiency (from 0.11 to 7.0 g L−1). Temporal variation in net photosynthesis, stomatal conductance, transpiration rate and instantaneous water use efficiency identified different strategies adopted by genotypes, and that genotypes selected from M. floridulus and M. sinensis were better adapted to rainfed conditions and could produce six times more biomass than the Mxg. These accessions are being used as parents in experimental breeding aimed at producing future seed-based drought resilient hybrids.


Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2017 ◽  
Vol 14 (5) ◽  
pp. 1333-1348 ◽  
Author(s):  
Torbern Tagesson ◽  
Jonas Ardö ◽  
Bernard Cappelaere ◽  
Laurent Kergoat ◽  
Abdulhakim Abdi ◽  
...  

Abstract. It has been shown that vegetation growth in semi-arid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001–2014 was 736 ± 39 g C m−2 yr−1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.


2008 ◽  
Vol 59 (8) ◽  
pp. 702 ◽  
Author(s):  
P. Annicchiarico ◽  
A. Abdelguerfi ◽  
M. Ben Younes ◽  
H. Bouzerzour ◽  
A. M. Carroni ◽  
...  

Sulla coronaria (L.) Choi & Ohashi (syn. Hedysarum coronarium L.) may become a major forage species in various Mediterranean-climate areas. This study aimed to assess the extent of genotype × environment (GE) interaction in the western Mediterranean region and its implications for breeding programmes. The milestone Italian varieties Grimaldi and Sparacia, one recent Italian variety, and the Tunisian cv. D’Italie (evolved under moderately favourable conditions from Italian germplasm introduced about 40 years ago) were evaluated in three environments of Tunisia (of which two were irrigated), two of Algeria, and one of Sardinia (Italy). Water available over the crop cycle (rainfall + possible irrigation from October 2004 to June 2006), ranging from 881 to 1906 mm, accounted for 85% of the variation among environments and 72% of the GE interaction variation for dry matter yield. The latter was adequately described by one-covariate factorial regression, which was preferable to joint regression and additive main effects and multiplicative interaction modelling. D’Italie was specifically adapted to environments with available water exceeding 1200 mm, Grimaldi was top-ranking between 950 and 1200 mm, and Sparacia below 950 mm. The crossover GE interaction between top-yielding material (P < 0.05) has implications for adaptation targets, genetic resources, selection environments, and opportunities for international co-operation between breeding programmes. It suggests breeding either for rainfed cropping in semi-arid or near semi-arid environments, or for definitely subhumid or irrigated environments.


Sign in / Sign up

Export Citation Format

Share Document