CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects

2020 ◽  
Vol 19 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Shakeel Ahmad ◽  
Xiangjin Wei ◽  
Zhonghua Sheng ◽  
Peisong Hu ◽  
Shaoqing Tang

Abstract Several plant pathogens severely affect crop yield and quality, thereby threatening global food security. In order to cope with this challenge, genetic improvement of plant disease resistance is required for sustainable agricultural production, for which conventional breeding is unlikely to do enough. Luckily, genome editing systems that particularly clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) has revolutionized crop improvement by enabling robust and precise targeted genome modifications. It paves the way towards new methods for genetic improvement of plant disease resistance and accelerates resistance breeding. In this review, the challenges, limitations and prospects for conventional breeding and the applications of CRISPR/Cas9 system for the development of transgene-free disease-resistant crops are discussed.

2019 ◽  
Vol 374 (1767) ◽  
pp. 20180322 ◽  
Author(s):  
Kangquan Yin ◽  
Jin-Long Qiu

Diseases severely affect crop yield and quality, thereby threatening global food security. Genetic improvement of plant disease resistance is essential for sustainable agriculture. Genome editing has been revolutionizing plant biology and biotechnology by enabling precise, targeted genome modifications. Editing provides new methods for genetic improvement of plant disease resistance and accelerates resistance breeding. Here, we first summarize the challenges for breeding resistant crops. Next, we focus on applications of genome editing technology in generating plants with resistance to bacterial, fungal and viral diseases. Finally, we discuss the potential of genome editing for breeding crops that present novel disease resistance in the future. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.


2021 ◽  
Vol 12 ◽  
Author(s):  
Narayan Chandra Paul ◽  
Sung-Won Park ◽  
Haifeng Liu ◽  
Sungyu Choi ◽  
Jihyeon Ma ◽  
...  

Crop production has been substantially reduced by devastating fungal and oomycete pathogens, and these pathogens continue to threaten global food security. Although chemical and cultural controls have been used for crop protection, these involve continuous costs and time and fungicide resistance among plant pathogens has been increasingly reported. The most efficient way to protect crops from plant pathogens is cultivation of disease-resistant cultivars. However, traditional breeding approaches are laborious and time intensive. Recently, the CRISPR/Cas9 system has been utilized to enhance disease resistance among different crops such as rice, cacao, wheat, tomato, and grape. This system allows for precise genome editing of various organisms via RNA-guided DNA endonuclease activity. Beyond genome editing in crops, editing the genomes of fungal and oomycete pathogens can also provide new strategies for plant disease management. This review focuses on the recent studies of plant disease resistance against fungal and oomycete pathogens using the CRISPR/Cas9 system. For long-term plant disease management, the targeting of multiple plant disease resistance mechanisms with CRISPR/Cas9 and insights gained by probing fungal and oomycete genomes with this system will be powerful approaches.


2021 ◽  
Author(s):  
Jiorgos Kourelis ◽  
Clemence Marchal ◽  
Sophien Kamoun

Plant pathogens cause recurrent epidemics that threaten crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen races. Therefore, there is a need to develop made-to-order synthetic plant immune receptors with resistance tailored to the pathogen genotypes present in the field. Here we show that plant immune receptors can be used as scaffolds for VHH nanobody fusions that bind fluorescent proteins (FPs). The receptor-nanobody fusions signal in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Given that nanobodies can be raised against virtually any molecule, immune receptor-nanobody fusions have the potential to generate resistance against all major plant pathogens and pests.


2021 ◽  
Vol 11 (23) ◽  
pp. 11123
Author(s):  
Siqi Cheng ◽  
Ruonan Li ◽  
Lili Lin ◽  
Haojie Shi ◽  
Xunyan Liu ◽  
...  

Polygalacturonase-inhibiting protein (PGIP) is an important plant biochemical anti-disease factor. PGIP has a leucine-rich repeat structure that can selectively bind and inhibit the activity of endo-polygalacturonase (endo-PG) in fungi, playing a key role in plant disease resistance. The regulation of PGIP in plant disease resistance has been well studied, and the effect of PGIP to increase disease resistance is clear. This review summarizes recent advances in understanding the PGIP protein structure, the PGIP mechanism of plant disease resistance, and anti-disease activity by PGIP gene transfer. This overview should contribute to a better understanding of PGIP function and can help guide resistance breeding of PGIP for anti-disease effects.


2021 ◽  
Vol 171 (4) ◽  
pp. 849-867
Author(s):  
Basavantraya N. Devanna ◽  
Rajdeep Jaswal ◽  
Pankaj Kumar Singh ◽  
Ritu Kapoor ◽  
Priyanka Jain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document