scholarly journals Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data

2019 ◽  
Vol 21 (4) ◽  
pp. 1164-1181 ◽  
Author(s):  
Leandro Lima ◽  
Camille Marchet ◽  
Ségolène Caboche ◽  
Corinne Da Silva ◽  
Benjamin Istace ◽  
...  

Abstract Motivation Nanopore long-read sequencing technology offers promising alternatives to high-throughput short read sequencing, especially in the context of RNA-sequencing. However this technology is currently hindered by high error rates in the output data that affect analyses such as the identification of isoforms, exon boundaries, open reading frames and creation of gene catalogues. Due to the novelty of such data, computational methods are still actively being developed and options for the error correction of Nanopore RNA-sequencing long reads remain limited. Results In this article, we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool that not only reports classical error correction metrics but also the effect of correction on gene families, isoform diversity, bias toward the major isoform and splice site detection. We find that long read error correction tools that were originally developed for DNA are also suitable for the correction of Nanopore RNA-sequencing data, especially in terms of increasing base pair accuracy. Yet investigators should be warned that the correction process perturbs gene family sizes and isoform diversity. This work provides guidelines on which (or whether) error correction tools should be used, depending on the application type. Benchmarking software https://gitlab.com/leoisl/LR_EC_analyser

2018 ◽  
Author(s):  
Leandro Lima ◽  
Camille Marchet ◽  
Ségolène Caboche ◽  
Corinne Da Silva ◽  
Benjamin Istace ◽  
...  

AbstractMotivationLong-read sequencing technologies offer promising alternatives to high-throughput short read sequencing, especially in the context of RNA-sequencing. However these technologies are currently hindered by high error rates in the output data that affect analyses such as the identification of isoforms, exon boundaries, open reading frames, and the creation of gene catalogues. Due to the novelty of such data, computational methods are still actively being developed and options for the error-correction of RNA-sequencing long reads remain limited.ResultsIn this article, we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool that not only reports classical error-correction metrics but also the effect of correction on gene families, isoform diversity, bias towards the major isoform, and splice site detection. We find that long read error-correction tools that were originally developed for DNA are also suitable for the correction of RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be warned that the correction process perturbs gene family sizes and isoform diversity. This work provides guidelines on which (or whether) error-correction tools should be used, depending on the application type.Benchmarking softwarehttps://gitlab.com/leoisl/LR_EC_analyser


Author(s):  
Pierre Morisse ◽  
Thierry Lecroq ◽  
Arnaud Lefebvre

AbstractThird generation sequencing technologies Pacific Biosciences and Oxford Nanopore Technologies were respectively made available in 2011 and 2014. In contrast with second generation sequencing technologies such as Illumina, these new technologies allow the sequencing of long reads of tens to hundreds of kbps. These so called long reads are particularly promising, and are especially expected to solve various problems such as contig and haplotype assembly or scaffolding, for instance. However, these reads are also much more error prone than second generation reads, and display error rates reaching 10 to 30%, according to the sequencing technology and to the version of the chemistry. Moreover, these errors are mainly composed of insertions and deletions, whereas most errors are substitutions in Illumina reads. As a result, long reads require efficient error correction, and a plethora of error correction tools, directly targeted at these reads, were developed in the past nine years. These methods can adopt a hybrid approach, using complementary short reads to perform correction, or a self-correction approach, only making use of the information contained in the long reads sequences. Both these approaches make use of various strategies such as multiple sequence alignment, de Bruijn graphs, hidden Markov models, or even combine different strategies. In this paper, we describe a complete survey of long-read error correction, reviewing all the different methodologies and tools existing up to date, for both hybrid and self-correction. Moreover, the long reads characteristics, such as sequencing depth, length, error rate, or even sequencing technology, can have an impact on how well a given tool or strategy performs, and can thus drastically reduce the correction quality. We thus also present an in-depth benchmark of available long-read error correction tools, on a wide variety of datasets, composed of both simulated and real data, with various error rates, coverages, and read lengths, ranging from small bacterial to large mammal genomes.


2020 ◽  
Author(s):  
Richard Kuo ◽  
Yuanyuan Cheng ◽  
Runxuan Zhang ◽  
John W.S. Brown ◽  
Jacqueline Smith ◽  
...  

Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide stronger evidence for genes that were previously either undetectable or impossible to differentiate from sequencing noise such as rare transcripts, mono-exonic, and non-coding genes.Results We analyzed Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using the Transcriptome Annotation by Modular Algorithms (TAMA) software. We found that the convention of using mapping identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction leads to the thousands of erroneous gene models. Using genome assembly based error correction and gene feature evidence, we identified thousands of potentially functional novel genes.Conclusions The standard of using inter-read error correction for long read RNA sequencing data could be responsible for genome annotations with thousands of biologically inaccurate gene models. More than half of all real genes in the human genome may still be missing in current public annotations. We require better methods for differentiating sequencing noise from real genes in long read RNA sequencing data.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Camille Marchet ◽  
Pierre Morisse ◽  
Lolita Lecompte ◽  
Arnaud Lefebvre ◽  
Thierry Lecroq ◽  
...  

Abstract The error rates of third-generation sequencing data have been capped >5%, mainly containing insertions and deletions. Thereby, an increasing number of diverse long reads correction methods have been proposed. The quality of the correction has huge impacts on downstream processes. Therefore, developing methods allowing to evaluate error correction tools with precise and reliable statistics is a crucial need. These evaluation methods rely on costly alignments to evaluate the quality of the corrected reads. Thus, key features must allow the fast comparison of different tools, and scale to the increasing length of the long reads. Our tool, ELECTOR, evaluates long reads correction and is directly compatible with a wide range of error correction tools. As it is based on multiple sequence alignment, we introduce a new algorithmic strategy for alignment segmentation, which enables us to scale to large instances using reasonable resources. To our knowledge, we provide the unique method that allows producing reproducible correction benchmarks on the latest ultra-long reads (>100 k bases). It is also faster than the current state-of-the-art on other datasets and provides a wider set of metrics to assess the read quality improvement after correction. ELECTOR is available on GitHub (https://github.com/kamimrcht/ELECTOR) and Bioconda.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Haowen Zhang ◽  
Chirag Jain ◽  
Srinivas Aluru

Abstract Background Third-generation single molecule sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. Results In this paper, we present a categorization and review of long read error correction methods, and provide a comprehensive evaluation of the corresponding long read error correction tools. Leveraging recent real sequencing data, we establish benchmark data sets and set up evaluation criteria for a comparative assessment which includes quality of error correction as well as run-time and memory usage. We study how trimming and long read sequencing depth affect error correction in terms of length distribution and genome coverage post-correction, and the impact of error correction performance on an important application of long reads, genome assembly. We provide guidelines for practitioners for choosing among the available error correction tools and identify directions for future research. Conclusions Despite the high error rate of long reads, the state-of-the-art correction tools can achieve high correction quality. When short reads are available, the best hybrid methods outperform non-hybrid methods in terms of correction quality and computing resource usage. When choosing tools for use, practitioners are suggested to be careful with a few correction tools that discard reads, and check the effect of error correction tools on downstream analysis. Our evaluation code is available as open-source at https://github.com/haowenz/LRECE.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S11) ◽  
Author(s):  
Arghya Kusum Das ◽  
Sayan Goswami ◽  
Kisung Lee ◽  
Seung-Jong Park

Abstract Background Long-read sequencing has shown the promises to overcome the short length limitations of second-generation sequencing by providing more complete assembly. However, the computation of the long sequencing reads is challenged by their higher error rates (e.g., 13% vs. 1%) and higher cost ($0.3 vs. $0.03 per Mbp) compared to the short reads. Methods In this paper, we present a new hybrid error correction tool, called ParLECH (Parallel Long-read Error Correction using Hybrid methodology). The error correction algorithm of ParLECH is distributed in nature and efficiently utilizes the k-mer coverage information of high throughput Illumina short-read sequences to rectify the PacBio long-read sequences.ParLECH first constructs a de Bruijn graph from the short reads, and then replaces the indel error regions of the long reads with their corresponding widest path (or maximum min-coverage path) in the short read-based de Bruijn graph. ParLECH then utilizes the k-mer coverage information of the short reads to divide each long read into a sequence of low and high coverage regions, followed by a majority voting to rectify each substituted error base. Results ParLECH outperforms latest state-of-the-art hybrid error correction methods on real PacBio datasets. Our experimental evaluation results demonstrate that ParLECH can correct large-scale real-world datasets in an accurate and scalable manner. ParLECH can correct the indel errors of human genome PacBio long reads (312 GB) with Illumina short reads (452 GB) in less than 29 h using 128 compute nodes. ParLECH can align more than 92% bases of an E. coli PacBio dataset with the reference genome, proving its accuracy. Conclusion ParLECH can scale to over terabytes of sequencing data using hundreds of computing nodes. The proposed hybrid error correction methodology is novel and rectifies both indel and substitution errors present in the original long reads or newly introduced by the short reads.


2019 ◽  
Author(s):  
Camille Marchet ◽  
Pierre Morisse ◽  
Lolita Lecompte ◽  
Arnaud Lefebvre ◽  
Thierry Lecroq ◽  
...  

AbstractMotivationIn the last few years, the error rates of third generation sequencing data have been capped above 5%, including many insertions and deletions. Thereby, an increasing number of long reads correction methods have been proposed to reduce the noise in these sequences. Whether hybrid or self-correction methods, there exist multiple approaches to correct long reads. As the quality of the error correction has huge impacts on downstream processes, developing methods allowing to evaluate error correction tools with precise and reliable statistics is therefore a crucial need. Since error correction is often a resource bottleneck in long reads pipelines, a key feature of assessment methods is therefore to be efficient, in order to allow the fast comparison of different tools.ResultsWe propose ELECTOR, a reliable and efficient tool to evaluate long reads correction, that enables the evaluation of hybrid and self-correction methods. Our tool provides a complete and relevant set of metrics to assess the read quality improvement after correction and scales to large datasets. ELECTOR is directly compatible with a wide range of state-of-the-art error correction tools, using whether simulated or real long reads. We show that ELECTOR displays a wider range of metrics than the state-of-the-art tool, LRCstats, and additionally importantly decreases the runtime needed for assessment on all the studied datasets.AvailabilityELECTOR is available at https://github.com/kamimrcht/[email protected] or [email protected]


2018 ◽  
Author(s):  
Robert S. Harris ◽  
Monika Cechova ◽  
Kateryna D. Makova

ABSTRACTSummaryTandem DNA repeats can be sequenced with long-read technologies, but cannot be accurately deciphered due to the lack of computational tools taking high error rates of these technologies into account. Here we introduce Noise-Cancelling Repeat Finder (NCRF) to uncover putative tandem repeats of specified motifs in noisy long reads produced by Pacific Biosciences and Oxford Nanopore sequencers. Using simulations, we validated the use of NCRF to locate tandem repeats with motifs of various lengths and demonstrated its superior performance as compared to two alternative tools. Using real human whole-genome sequencing data, NCRF identified long arrays of the (AATGG)n repeat involved in heat shock stress response.Availability and implementationNCRF is implemented in C, supported by several python scripts. Source code, under the MIT open source license, and simulation data are available at https://github.com/makovalab-psu/NoiseCancellingRepeatFinder, and also in bioconda.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Nathan LaPierre ◽  
Rob Egan ◽  
Wei Wang ◽  
Zhong Wang

Abstract Background Long read sequencing technologies such as Oxford Nanopore can greatly decrease the complexity of de novo genome assembly and large structural variation identification. Currently Nanopore reads have high error rates, and the errors often cluster into low-quality segments within the reads. The limited sensitivity of existing read-based error correction methods can cause large-scale mis-assemblies in the assembled genomes, motivating further innovation in this area. Results Here we developed a Convolutional Neural Network (CNN) based method, called MiniScrub, for identification and subsequent “scrubbing” (removal) of low-quality Nanopore read segments to minimize their interference in downstream assembly process. MiniScrub first generates read-to-read overlaps via MiniMap2, then encodes the overlaps into images, and finally builds CNN models to predict low-quality segments. Applying MiniScrub to real world control datasets under several different parameters, we show that it robustly improves read quality, and improves read error correction in the metagenome setting. Compared to raw reads, de novo genome assembly with scrubbed reads produces many fewer mis-assemblies and large indel errors. Conclusions MiniScrub is able to robustly improve read quality of Oxford Nanopore reads, especially in the metagenome setting, making it useful for downstream applications such as de novo assembly. We propose MiniScrub as a tool for preprocessing Nanopore reads for downstream analyses. MiniScrub is open-source software and is available at https://bitbucket.org/berkeleylab/jgi-miniscrub.


Author(s):  
Kristoffer Sahlin ◽  
Botond Sipos ◽  
Phillip L James ◽  
Paul Medvedev

AbstractOxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing transcriptome analysis through its capacity to sequence the majority of transcripts from end-to-end. This has greatly increased our ability to study the diversity of transcription mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT still suffers from high error rates which have thus far limited its scope to reference-based analyses. When a reference is not available or is not a viable option due to reference-bias, error correction is a crucial step towards the reconstruction of the sequenced transcripts and downstream sequence analysis of transcripts. In this paper, we present a novel computational method to error correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at low sequencing depths. We are able to obtain a median accuracy of 98.9-99.6%, demonstrating the feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.


Sign in / Sign up

Export Citation Format

Share Document