What’s the target: understanding two decades of in silico microRNA-target prediction

2019 ◽  
Vol 21 (6) ◽  
pp. 1999-2010 ◽  
Author(s):  
Fabian Kern ◽  
Christina Backes ◽  
Pascal Hirsch ◽  
Tobias Fehlmann ◽  
Martin Hart ◽  
...  

Abstract Motivation Since the initial discovery of microRNAs as post-transcriptional, regulatory key players in the 1990s, a total number of $2656$ mature microRNAs have been publicly described for Homo sapiens. As discovery of new miRNAs is still on-going, target identification remains to be an essential and challenging step preceding functional annotation analysis. One key challenge for researchers seems to be the selection of the most appropriate tool out of the larger multiverse of published solutions for a given research study set-up. Results In this review we collectively describe the field of in silico target prediction in the course of time and point out long withstanding principles as well as recent developments. By compiling a catalog of characteristics about the 98 prediction methods and identifying common and exclusive traits, we signpost a simplified mechanism to address the problem of application selection. Going further we devised interpretation strategies for common types of output as generated by frequently used computational methods. To this end, our work specifically aims to make prospective users aware of common mistakes and practical questions that arise during the application of target prediction tools. Availability An interactive implementation of our recommendations including materials shown in the manuscript is freely available at https://www.ccb.uni-saarland.de/mtguide.

2020 ◽  
Vol 17 (2) ◽  
pp. 125-132
Author(s):  
Marjanu Hikmah Elias ◽  
Noraziah Nordin ◽  
Nazefah Abdul Hamid

Background: Chronic Myeloid Leukaemia (CML) is associated with the BCRABL1 gene, which plays a central role in the pathogenesis of CML. Thus, it is crucial to suppress the expression of BCR-ABL1 in the treatment of CML. MicroRNA is known to be a gene expression regulator and is thus a good candidate for molecularly targeted therapy for CML. Objective: This study aims to identify the microRNAs from edible plants targeting the 3’ Untranslated Region (3’UTR) of BCR-ABL1. Methods: In this in silico analysis, the sequence of 3’UTR of BCR-ABL1 was obtained from Ensembl Genome Browser. PsRNATarget Analysis Server and MicroRNA Target Prediction (miRTar) Server were used to identify miRNAs that have binding conformity with 3’UTR of BCR-ABL1. The MiRBase database was used to validate the species of plants expressing the miRNAs. The RNAfold web server and RNA COMPOSER were used for secondary and tertiary structure prediction, respectively. Results: In silico analyses revealed that cpa-miR8154, csi-miR3952, gma-miR4414-5p, mdm-miR482c, osa-miR1858a and osa-miR1858b show binding conformity with strong molecular interaction towards 3’UTR region of BCR-ABL1. However, only cpa-miR- 8154, osa-miR-1858a and osa-miR-1858b showed good target site accessibility. Conclusion: It is predicted that these microRNAs post-transcriptionally inhibit the BCRABL1 gene and thus could be a potential molecular targeted therapy for CML. However, further studies involving in vitro, in vivo and functional analyses need to be carried out to determine the ability of these miRNAs to form the basis for targeted therapy for CML.


2019 ◽  
Vol 14 (5) ◽  
pp. 432-445 ◽  
Author(s):  
Muniba Faiza ◽  
Khushnuma Tanveer ◽  
Saman Fatihi ◽  
Yonghua Wang ◽  
Khalid Raza

Background: MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level through complementary base pairing with the target mRNA, leading to mRNA degradation and blocking translation process. Many dysfunctions of these small regulatory molecules have been linked to the development and progression of several diseases. Therefore, it is necessary to reliably predict potential miRNA targets. Objective: A large number of computational prediction tools have been developed which provide a faster way to find putative miRNA targets, but at the same time, their results are often inconsistent. Hence, finding a reliable, functional miRNA target is still a challenging task. Also, each tool is equipped with different algorithms, and it is difficult for the biologists to know which tool is the best choice for their study. Methods: We analyzed eleven miRNA target predictors on Drosophila melanogaster and Homo sapiens by applying significant empirical methods to evaluate and assess their accuracy and performance using experimentally validated high confident mature miRNAs and their targets. In addition, this paper also describes miRNA target prediction algorithms, and discusses common features of frequently used target prediction tools. Results: The results show that MicroT, microRNA and CoMir are the best performing tool on Drosopihla melanogaster; while TargetScan and miRmap perform well for Homo sapiens. The predicted results of each tool were combined in order to improve the performance in both the datasets, but any significant improvement is not observed in terms of true positives. Conclusion: The currently available miRNA target prediction tools greatly suffer from a large number of false positives. Therefore, computational prediction of significant targets with high statistical confidence is still an open challenge.


2010 ◽  
Vol 08 (04) ◽  
pp. 763-788 ◽  
Author(s):  
YUN ZHENG ◽  
WEIXIONG ZHANG

Many recent studies have shown that access of animal microRNAs (miRNAs) to their complementary sites in target mRNAs is determined by several sequence-specific determinants beyond the seed regions in the 5′ end of miRNAs. These factors have been related to the repressive power of miRNAs and used in some programs to predict the efficacy of miRNA complementary sites. However, these factors have not been systematically examined regarding their capacities for improving miRNA target prediction. We develop a new miRNA target prediction algorithm, called Hitsensor, by incorporating many sequence-specific features that determine complementarities between miRNAs and their targets, in addition to the canonical seed regions in the 5′ ends of miRNAs. We evaluate the performance of our algorithm on 720 known animal miRNA:target pairs in four species, Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans. Our experimental results show that Hitsensor outperforms five popular existing algorithms, indicating that our unique scheme for quantifying the determinants of complementary sites is effective in improving the performance of a miRNA target prediction algorithm. We also examine the effectiveness of miRNA-mediated repression for the predicted targets by using a published quantitative protein expression dataset of miR-223 knockout in mouse neutrophils. Hitsensor identifies more targets than the existing algorithms, and the predicted targets of Hitsensor show comparable protein level changes to those of the existing algorithms.


2021 ◽  
Vol 28 ◽  
Author(s):  
Mst Shamima Khatun ◽  
Md Ashad Alam ◽  
Watshara Shoombuatong ◽  
Md Nurul Haque Mollah ◽  
Hiroyuki Kurata ◽  
...  

: MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.


Biochimie ◽  
2021 ◽  
Author(s):  
KM Taufiqul Arif ◽  
Rachel K. Okolicsanyi ◽  
Larisa M. Haupt ◽  
Lyn R. Griffiths

2019 ◽  
pp. 1-4
Author(s):  
Tikam Chand ◽  
Tikam Chand

Having role in gene regulation and silencing, miRNAs have been implicated in development and progression of a number of diseases, including cancer. Herein, I present potential miRNAs associated with BAP1 gene identified using in-silico tools such as TargetScan and Exiqon miRNA Target Prediction. I identified fifteen highly conserved miRNA (hsa-miR-423-5p, hsa-miR-3184-5p, hsa-miR-4319, hsa-miR125b-5p, hsa-miR-125a-5p, hsa-miR-6893-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-505-3p.1, hsa-miR-429, hsa-miR-370-3p, hsa-miR-125a-5p, hsa-miR-141-3p, hsa-miR-200a-3p, and hsa-miR-429) associated with BAP1 gene. We also predicted the differential regulation of these twelve miRNAs in different cancer types.


2020 ◽  
Vol 23 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Christophe Tratrat

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.


Author(s):  
Shikha Sharma ◽  
Shweta Sharma ◽  
Vaishali Pathak ◽  
Parwinder Kaur ◽  
Rajesh Kumar Singh

Aim: To investigate and validate the potential target proteins for drug repurposing of newly FDA approved antibacterial drug. Background: Drug repurposing is the process of assigning indications for drugs other than the one(s) that they were initially developed for. Discovery of entirely new indications from already approved drugs is highly lucrative as it minimizes the pipeline of the drug development process by reducing time and cost. In silico driven technologies made it possible to analyze molecules for different target proteins which are not yet explored. Objective: To analyze possible targets proteins for drug repurposing of lefamulin and their validation. Also, in silico prediction of novel scaffolds from lefamulin has been performed for assisting medicinal chemists in future drug design. Methods: A similarity-based prediction tool was employed for predicting target protein and further investigated using docking studies on PDB ID: 2V16. Besides, various in silico tools were employed for prediction of novel scaffolds from lefamulin using scaffold hopping technique followed by evaluation with various in silico parameters viz., ADME, synthetic accessibility and PAINS. Results: Based on the similarity and target prediction studies, renin is found as the most probable target protein for lefamulin. Further, validation studies using docking of lefamulin revealed the significant interactions of lefamulin with the binding pocket of the target protein. Also, three novel scaffolds were predicted using scaffold hopping technique and found to be in the limit to reduce the chances of drug failure in the physiological system during the last stage approval process. Conclusion: To encapsulate the future perspective, lefamulin may assist in the development of the renin inhibitors and, also three possible novel scaffolds with good pharmacokinetic profile can be developed into both as renin inhibitors and for bacterial infections.


2015 ◽  
Vol 89 (12) ◽  
pp. 6167-6170 ◽  
Author(s):  
Jessica K. Fiege ◽  
Ryan A. Langlois

Influenza A viruses display a broad cellular tropism within the respiratory tracts of mammalian hosts. Uncovering the relationship between tropism and virus immunity, pathogenesis, and transmission will be critical for the development of therapeutic interventions. Here we discuss recent developments of several recombinant strains of influenza A virus. These viruses have inserted reporters to track tropism, microRNA target sites to restrict tropism, or barcodes to assess transmission dynamics, expanding our understanding of pathogen-host interactions.


2012 ◽  
Vol 2 ◽  
Author(s):  
Martin Reczko ◽  
Manolis Maragkakis ◽  
Panagiotis Alexiou ◽  
Giorgio L. Papadopoulos ◽  
Artemis G. Hatzigeorgiou

Sign in / Sign up

Export Citation Format

Share Document