scholarly journals A novel sequence alignment algorithm based on deep learning of the protein folding code

Author(s):  
Mu Gao ◽  
Jeffrey Skolnick

Abstract Motivation From evolutionary interference, function annotation to structural prediction, protein sequence comparison has provided crucial biological insights. While many sequence alignment algorithms have been developed, existing approaches often cannot detect hidden structural relationships in the ‘twilight zone’ of low sequence identity. To address this critical problem, we introduce a computational algorithm that performs protein Sequence Alignments from deep-Learning of Structural Alignments (SAdLSA, silent ‘d’). The key idea is to implicitly learn the protein folding code from many thousands of structural alignments using experimentally determined protein structures. Results To demonstrate that the folding code was learned, we first show that SAdLSA trained on pure α-helical proteins successfully recognizes pairs of structurally related pure β-sheet protein domains. Subsequent training and benchmarking on larger, highly challenging datasets show significant improvement over established approaches. For challenging cases, SAdLSA is ∼150% better than HHsearch for generating pairwise alignments and ∼50% better for identifying the proteins with the best alignments in a sequence library. The time complexity of SAdLSA is O(N) thanks to GPU acceleration. Availability and implementation Datasets and source codes of SAdLSA are available free of charge for academic users at http://sites.gatech.edu/cssb/sadlsa/. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Tianqi Wu ◽  
Jie Hou ◽  
Badri Adhikari ◽  
Jianlin Cheng

Abstract Motivation Deep learning has become the dominant technology for protein contact prediction. However, the factors that affect the performance of deep learning in contact prediction have not been systematically investigated. Results We analyzed the results of our three deep learning-based contact prediction methods (MULTICOM-CLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 targets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact prediction than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage points. We also tested different alignment methods and domain-based contact prediction with the deep learning contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration of domain-based contact prediction with the full-length contact prediction improved the performance of contact prediction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to improve contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple distance intervals could capture more structural information and improve binary contact prediction. Availability and implementation https://github.com/multicom-toolbox/DNCON2/. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Author(s):  
Sajia Akhter ◽  
Robert A Edwards

AbstractNext generation sequencing (NGS) technology produces massive amounts of data in a reasonable time and low cost. Analyzing and annotating these data requires sequence alignments to compare them with genes, proteins and genomes in different databases. Sequence alignment is the first step in metagenomics analysis, and pairwise comparisons of sequence reads provide a measure of similarity between environments. Most of the current aligners focus on aligning NGS datasets against long reference sequences rather than comparing between datasets. As the number of metagenomes and other genomic data increases each year, there is a demand for more sophisticated, faster sequence alignment algorithms. Here, we introduce a novel sequence aligner, Qudaich, which can efficiently process large volumes of data and is suited to de novo comparisons of next generation reads datasets. Qudaich can handle both DNA and protein sequences and attempts to provide the best possible alignment for each query sequence. Qudaich can produce more useful alignments quicker than other contemporary alignment algorithms.Author SummaryThe recent developments in sequencing technology provides high throughput sequencing data and have resulted in large volumes of genomic and metagenomic data available in public databases. Sequence alignment is an important step for annotating these data. Many sequence aligners have been developed in last few years for efficient analysis of these data, however most of them are only able to align DNA sequences and mainly focus on aligning NGS data against long reference genomes. Therefore, in this study we have designed a new sequence aligner, qudaich, which can generate pairwise local sequence alignment (at both the DNA and protein level) between two NGS datasets and can efficiently handle the large volume of NGS datasets. In qudaich, we introduce a unique sequence alignment algorithm, which outperforms the traditional approaches. Qudaich not only takes less time to execute, but also finds more useful alignments than contemporary aligners.


2019 ◽  
Vol 36 (1) ◽  
pp. 104-111
Author(s):  
Shuichiro Makigaki ◽  
Takashi Ishida

Abstract Motivation Template-based modeling, the process of predicting the tertiary structure of a protein by using homologous protein structures, is useful if good templates can be found. Although modern homology detection methods can find remote homologs with high sensitivity, the accuracy of template-based models generated from homology-detection-based alignments is often lower than that from ideal alignments. Results In this study, we propose a new method that generates pairwise sequence alignments for more accurate template-based modeling. The proposed method trains a machine learning model using the structural alignment of known homologs. It is difficult to directly predict sequence alignments using machine learning. Thus, when calculating sequence alignments, instead of a fixed substitution matrix, this method dynamically predicts a substitution score from the trained model. We evaluate our method by carefully splitting the training and test datasets and comparing the predicted structure’s accuracy with that of state-of-the-art methods. Our method generates more accurate tertiary structure models than those produced from alignments obtained by other methods. Availability and implementation https://github.com/shuichiro-makigaki/exmachina. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3077-3083
Author(s):  
Wentao Shi ◽  
Jeffrey M Lemoine ◽  
Abd-El-Monsif A Shawky ◽  
Manali Singha ◽  
Limeng Pu ◽  
...  

Abstract Motivation Fast and accurate classification of ligand-binding sites in proteins with respect to the class of binding molecules is invaluable not only to the automatic functional annotation of large datasets of protein structures but also to projects in protein evolution, protein engineering and drug development. Deep learning techniques, which have already been successfully applied to address challenging problems across various fields, are inherently suitable to classify ligand-binding pockets. Our goal is to demonstrate that off-the-shelf deep learning models can be employed with minimum development effort to recognize nucleotide- and heme-binding sites with a comparable accuracy to highly specialized, voxel-based methods. Results We developed BionoiNet, a new deep learning-based framework implementing a popular ResNet model for image classification. BionoiNet first transforms the molecular structures of ligand-binding sites to 2D Voronoi diagrams, which are then used as the input to a pretrained convolutional neural network classifier. The ResNet model generalizes well to unseen data achieving the accuracy of 85.6% for nucleotide- and 91.3% for heme-binding pockets. BionoiNet also computes significance scores of pocket atoms, called BionoiScores, to provide meaningful insights into their interactions with ligand molecules. BionoiNet is a lightweight alternative to computationally expensive 3D architectures. Availability and implementation BionoiNet is implemented in Python with the source code freely available at: https://github.com/CSBG-LSU/BionoiNet. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Hyun-Myung Woo ◽  
Byung-Jun Yoon

Abstract Motivation Alignment of protein–protein interaction networks can be used for the unsupervised prediction of functional modules, such as protein complexes and signaling pathways, that are conserved across different species. To date, various algorithms have been proposed for biological network alignment, many of which attempt to incorporate topological similarity between the networks into the alignment process with the goal of constructing accurate and biologically meaningful alignments. Especially, random walk models have been shown to be effective for quantifying the global topological relatedness between nodes that belong to different networks by diffusing node-level similarity along the interaction edges. However, these schemes are not ideal for capturing the local topological similarity between nodes. Results In this article, we propose MONACO, a novel and versatile network alignment algorithm that finds highly accurate pairwise and multiple network alignments through the iterative optimal matching of ‘local’ neighborhoods around focal nodes. Extensive performance assessment based on real networks as well as synthetic networks, for which the ground truth is known, demonstrates that MONACO clearly and consistently outperforms all other state-of-the-art network alignment algorithms that we have tested, in terms of accuracy, coherence and topological quality of the aligned network regions. Furthermore, despite the sharply enhanced alignment accuracy, MONACO remains computationally efficient and it scales well with increasing size and number of networks. Availability and implementation Matlab implementation is freely available at https://github.com/bjyoontamu/MONACO. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4854-4856 ◽  
Author(s):  
James D Stephenson ◽  
Roman A Laskowski ◽  
Andrew Nightingale ◽  
Matthew E Hurles ◽  
Janet M Thornton

Abstract Motivation Understanding the protein structural context and patterning on proteins of genomic variants can help to separate benign from pathogenic variants and reveal molecular consequences. However, mapping genomic coordinates to protein structures is non-trivial, complicated by alternative splicing and transcript evidence. Results Here we present VarMap, a web tool for mapping a list of chromosome coordinates to canonical UniProt sequences and associated protein 3D structures, including validation checks, and annotating them with structural information. Availability and implementation https://www.ebi.ac.uk/thornton-srv/databases/VarMap. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Mu Gao ◽  
Jeffrey Skolnick

During the past five years, deep-learning algorithms have enabled ground-breaking progress towards the prediction of tertiary structure from a protein sequence. Very recently, we developed SAdLSA, a new computational algorithm for protein sequence comparison via deep-learning of protein structural alignments. SAdLSA shows significant improvement over established sequence alignment methods. In this contribution, we show that SAdLSA provides a general machine-learning framework for structurally characterizing protein sequences. By aligning a protein sequence against itself, SAdLSA generates a fold distogram for the input sequence, including challenging cases whose structural folds were not present in the training set. About 70% of the predicted distograms are statistically significant. Although at present the accuracy of the distogram predicted by SAdLSA self-alignment is not as good as deep-learning algorithms specifically trained for distogram prediction, it is remarkable that the prediction of single protein structures is encoded by an algorithm that learns ensembles of pairwise structural comparisons, without being explicitly trained to recognize individual structural folds. As such, SAdLSA can not only predict protein folds for individual sequences, but also detects subtle, yet significant, structural relationships between multiple protein sequences using the same deep-learning neural network. The former reduces to a special case in this general framework for protein sequence annotation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haipeng Shi ◽  
Haihe Shi ◽  
Shenghua Xu

As a key algorithm in bioinformatics, sequence alignment algorithm is widely used in sequence similarity analysis and genome sequence database search. Existing research focuses mainly on the specific steps of the algorithm or is for specific problems, lack of high-level abstract domain algorithm framework. Multiple sequence alignment algorithms are more complex, redundant, and difficult to understand, and it is not easy for users to select the appropriate algorithm; some computing errors may occur. Based on our constructed pairwise sequence alignment algorithm component library and the convenient software platform PAR, a few expansion domain components are developed for multiple sequence alignment application domain, and specific multiple sequence alignment algorithm can be designed, and its corresponding program, i.e., C++/Java/Python program, can be generated efficiently and thus enables the improvement of the development efficiency of complex algorithms, as well as accuracy of sequence alignment calculation. A star alignment algorithm is designed and generated to demonstrate the development process.


2018 ◽  
Vol 35 (14) ◽  
pp. 2418-2426 ◽  
Author(s):  
David Simoncini ◽  
Kam Y J Zhang ◽  
Thomas Schiex ◽  
Sophie Barbe

Abstract Motivation Structure-based Computational Protein design (CPD) plays a critical role in advancing the field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences that fold into a target structure and ultimately perform a desired function. Energy functions remain however imperfect and injecting relevant information from known structures in the design process should lead to improved designs. Results We introduce Shades, a data-driven CPD method that exploits local structural environments in known protein structures together with energy to guide sequence design, while sampling side-chain and backbone conformations to accommodate mutations. Shades (Structural Homology Algorithm for protein DESign), is based on customized libraries of non-contiguous in-contact amino acid residue motifs. We have tested Shades on a public benchmark of 40 proteins selected from different protein families. When excluding homologous proteins, Shades achieved a protein sequence recovery of 30% and a protein sequence similarity of 46% on average, compared with the PFAM protein family of the target protein. When homologous structures were added, the wild-type sequence recovery rate achieved 93%. Availability and implementation Shades source code is available at https://bitbucket.org/satsumaimo/shades as a patch for Rosetta 3.8 with a curated protein structure database and ITEM library creation software. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Ming Huang ◽  
Nilay D. Shah ◽  
Lixia Yao

Abstract Background Sequence alignment is a way of arranging sequences (e.g., DNA, RNA, protein, natural language, financial data, or medical events) to identify the relatedness between two or more sequences and regions of similarity. For Electronic Health Records (EHR) data, sequence alignment helps to identify patients of similar disease trajectory for more relevant and precise prognosis, diagnosis and treatment of patients. Methods We tested two cutting-edge global sequence alignment methods, namely dynamic time warping (DTW) and Needleman-Wunsch algorithm (NWA), together with their local modifications, DTW for Local alignment (DTWL) and Smith-Waterman algorithm (SWA), for aligning patient medical records. We also used 4 sets of synthetic patient medical records generated from a large real-world EHR database as gold standard data, to objectively evaluate these sequence alignment algorithms. Results For global sequence alignments, 47 out of 80 DTW alignments and 11 out of 80 NWA alignments had superior similarity scores than reference alignments while the rest 33 DTW alignments and 69 NWA alignments had the same similarity scores as reference alignments. Forty-six out of 80 DTW alignments had better similarity scores than NWA alignments with the rest 34 cases having the equal similarity scores from both algorithms. For local sequence alignments, 70 out of 80 DTWL alignments and 68 out of 80 SWA alignments had larger coverage and higher similarity scores than reference alignments while the rest DTWL alignments and SWA alignments received the same coverage and similarity scores as reference alignments. Six out of 80 DTWL alignments showed larger coverage and higher similarity scores than SWA alignments. Thirty DTWL alignments had the equal coverage but better similarity scores than SWA. DTWL and SWA received the equal coverage and similarity scores for the rest 44 cases. Conclusions DTW, NWA, DTWL and SWA outperformed the reference alignments. DTW (or DTWL) seems to align better than NWA (or SWA) by inserting new daily events and identifying more similarities between patient medical records. The evaluation results could provide valuable information on the strengths and weakness of these sequence alignment methods for future development of sequence alignment methods and patient similarity-based studies.


Sign in / Sign up

Export Citation Format

Share Document