maTE: discovering expressed interactions between microRNAs and their targets

2019 ◽  
Vol 35 (20) ◽  
pp. 4020-4028 ◽  
Author(s):  
Malik Yousef ◽  
Loai Abdallah ◽  
Jens Allmer

Abstract Motivation Disease is often manifested via changes in transcript and protein abundance. MicroRNAs (miRNAs) are instrumental in regulating protein abundance and may measurably influence transcript levels. miRNAs often target more than one mRNA (for humans, the average is three), and mRNAs are often targeted by more than one miRNA (for the genes considered in this study, the average is also three). Therefore, it is difficult to determine the miRNAs that may cause the observed differential gene expression. We present a novel approach, maTE, which is based on machine learning, that integrates information about miRNA target genes with gene expression data. maTE depends on the availability of a sufficient amount of patient and control samples. The samples are used to train classifiers to accurately classify the samples on a per miRNA basis. Multiple high scoring miRNAs are used to build a final classifier to improve separation. Results The aim of the study is to find a set of miRNAs causing the regulation of their target genes that best explains the difference between groups (e.g. cancer versus control). maTE provides a list of significant groups of genes where each group is targeted by a specific miRNA. For the datasets used in this study, maTE generally achieves an accuracy well above 80%. Also, the results show that when the accuracy is much lower (e.g. ∼50%), the set of miRNAs provided is likely not causative of the difference in expression. This new approach of integrating miRNA regulation with expression data yields powerful results and is independent of external labels and training data. Thereby, this approach allows new avenues for exploring miRNA regulation and may enable the development of miRNA-based biomarkers and drugs. Availability and implementation The KNIME workflow, implementing maTE, is available at Bioinformatics online. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (9) ◽  
pp. 2690-2696
Author(s):  
Jarkko Toivonen ◽  
Pratyush K Das ◽  
Jussi Taipale ◽  
Esko Ukkonen

Abstract Motivation Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent evidence of better performance of higher order models such as Markov models of order one, also called adjacent dinucleotide matrices (ADMs). ADMs can model dependencies between adjacent nucleotides, unlike PPMs. A modeling technique and software tool that would estimate such models simultaneously both for monomers and their dimers have been missing. Results We present an ADM-based mixture model for monomeric and dimeric TF-binding motifs and an expectation maximization algorithm MODER2 for learning such models from training data and seeds. The model is a mixture that includes monomers and dimers, built from the monomers, with a description of the dimeric structure (spacing, orientation). The technique is modular, meaning that the co-operative effect of dimerization is made explicit by evaluating the difference between expected and observed models. The model is validated using HT-SELEX and generated datasets, and by comparing to some earlier PPM and ADM techniques. The ADM models explain data slightly better than PPM models for 314 tested TFs (or their DNA-binding domains) from four families (bHLH, bZIP, ETS and Homeodomain), the ADM mixture models by MODER2 being the best on average. Availability and implementation Software implementation is available from https://github.com/jttoivon/moder2. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
WEIXIANG LIU ◽  
KEHONG YUAN ◽  
JIAN WU ◽  
DATIAN YE ◽  
ZHEN JI ◽  
...  

Classification of gene expression samples is a core task in microarray data analysis. How to reduce thousands of genes and to select a suitable classifier are two key issues for gene expression data classification. This paper introduces a framework on combining both feature extraction and classifier simultaneously. Considering the non-negativity, high dimensionality and small sample size, we apply a discriminative mixture model which is designed for non-negative gene express data classification via non-negative matrix factorization (NMF) for dimension reduction. In order to enhance the sparseness of training data for fast learning of the mixture model, a generalized NMF is also adopted. Experimental results on several real gene expression datasets show that the classification accuracy, stability and decision quality can be significantly improved by using the generalized method, and the proposed method can give better performance than some previous reported results on the same datasets.


2019 ◽  
Vol 36 (3) ◽  
pp. 782-788 ◽  
Author(s):  
Jiebiao Wang ◽  
Bernie Devlin ◽  
Kathryn Roeder

Abstract Motivation Patterns of gene expression, quantified at the level of tissue or cells, can inform on etiology of disease. There are now rich resources for tissue-level (bulk) gene expression data, which have been collected from thousands of subjects, and resources involving single-cell RNA-sequencing (scRNA-seq) data are expanding rapidly. The latter yields cell type information, although the data can be noisy and typically are derived from a small number of subjects. Results Complementing these approaches, we develop a method to estimate subject- and cell-type-specific (CTS) gene expression from tissue using an empirical Bayes method that borrows information across multiple measurements of the same tissue per subject (e.g. multiple regions of the brain). Analyzing expression data from multiple brain regions from the Genotype-Tissue Expression project (GTEx) reveals CTS expression, which then permits downstream analyses, such as identification of CTS expression Quantitative Trait Loci (eQTL). Availability and implementation We implement this method as an R package MIND, hosted on https://github.com/randel/MIND. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

Abstract Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy. Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions. Availability and implementation The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (8) ◽  
pp. 2608-2610
Author(s):  
Aritro Nath ◽  
Jeremy Chang ◽  
R Stephanie Huang

Abstract Summary MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Due to challenges in accurate profiling of small RNAs, a vast majority of public transcriptome datasets lack reliable miRNA profiles. However, the biological consequence of miRNA activity in the form of altered protein-coding gene (PCG) expression can be captured using machine-learning algorithms. Here, we present iMIRAGE (imputed miRNA activity from gene expression), a convenient tool to predict miRNA expression using PCG expression of the test datasets. The iMIRAGE package provides an integrated workflow for normalization and transformation of miRNA and PCG expression data, along with the option to utilize predicted miRNA targets to impute miRNA activity from independent test PCG datasets. Availability and implementation The iMIRAGE package for R, along with package documentation and vignette, is available at https://aritronath.github.io/iMIRAGE/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3902-3904
Author(s):  
Timothy O’Connor ◽  
Charles E Grant ◽  
Mikael Bodén ◽  
Timothy L Bailey

Abstract Motivation Identifying the genes regulated by a given transcription factor (TF) (its ‘target genes’) is a key step in developing a comprehensive understanding of gene regulation. Previously, we developed a method (CisMapper) for predicting the target genes of a TF based solely on the correlation between a histone modification at the TF’s binding site and the expression of the gene across a set of tissues or cell lines. That approach is limited to organisms for which extensive histone and expression data are available, and does not explicitly incorporate the genomic distance between the TF and the gene. Results We present the T-Gene algorithm, which overcomes these limitations. It can be used to predict which genes are most likely to be regulated by a TF, and which of the TF’s binding sites are most likely involved in regulating particular genes. T-Gene calculates a novel score that combines distance and histone/expression correlation, and we show that this score accurately predicts when a regulatory element bound by a TF is in contact with a gene’s promoter, achieving median precision above 60%. T-Gene is easy to use via its web server or as a command-line tool, and can also make accurate predictions (median precision above 40%) based on distance alone when extensive histone/expression data is not available for the organism. T-Gene provides an estimate of the statistical significance of each of its predictions. Availability and implementation The T-Gene web server, source code, histone/expression data and genome annotation files are provided at http://meme-suite.org. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Antoine Despinasse ◽  
Yongjin Park ◽  
Michael Lapi ◽  
Manolis Kellis

ABSTRACTDespite all the work done, mapping GWAS SNPs in non-coding regions to their target genes remains a challenge. The SNP can be associated with target genes by eQTL analysis. Here we introduce a method to make these eQTLs more robust. Instead of correlating the gene expression with the SNP value like in eQTLs, we correlate it with epigenomic data. This epigenomic data is very expensive and noisy. We therefore predict the epigenomic data from the DNA sequence using the deep learning framework DeepSEA (Zhou and Troyanskaya, 2015).


F1000Research ◽  
2022 ◽  
Vol 9 ◽  
pp. 1159
Author(s):  
Qian (Vicky) Wu ◽  
Wei Sun ◽  
Li Hsu

Gene expression data have been used to infer gene-gene networks (GGN) where an edge between two genes implies the conditional dependence of these two genes given all the other genes. Such gene-gene networks are of-ten referred to as gene regulatory networks since it may reveal expression regulation. Most of existing methods for identifying GGN employ penalized regression with L1 (lasso), L2 (ridge), or elastic net penalty, which spans the range of L1 to L2 penalty. However, for high dimensional gene expression data, a penalty that spans the range of L0 and L1 penalty, such as the log penalty, is often needed for variable selection consistency. Thus, we develop a novel method that em-ploys log penalty within the framework of an earlier network identification method space (Sparse PArtial Correlation Estimation), and implement it into a R package space-log. We show that the space-log is computationally efficient (source code implemented in C), and has good performance comparing with other methods, particularly for networks with hubs.Space-log is open source and available at GitHub, https://github.com/wuqian77/SpaceLog


Sign in / Sign up

Export Citation Format

Share Document