scholarly journals DiscoRhythm: an easy-to-use web application and R package for discovering rhythmicity

Author(s):  
Matthew Carlucci ◽  
Algimantas Kriščiūnas ◽  
Haohan Li ◽  
Povilas Gibas ◽  
Karolis Koncevičius ◽  
...  

Abstract Motivation Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. Results To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude, and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER, and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling, and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. Availability and Implementation The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). Supplementary information Supplementary data are available at Bioinformatics online.

2016 ◽  
Author(s):  
Stephen G. Gaffney ◽  
Jeffrey P. Townsend

ABSTRACTSummaryPathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects.Availability and ImplementationWeb application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at github.com/sggaffney/pathscore with a GPLv3 [email protected] InformationAdditional documentation can be found at http://pathscore.publichealth.yale.edu/faq.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Eoin Fahy ◽  
Kevin Coakley ◽  
Manish Sud ◽  
Mano R Maurya ◽  
...  

ABSTRACTWith the advent of high throughput mass spectrometric methods, metabolomics has emerged as an essential area of research in biomedicine with the potential to provide deep biological insights into normal and diseased functions in physiology. However, to achieve the potential offered by metabolomics measures, there is a need for biologist-friendly integrative analysis tools that can transform data into mechanisms that relate to phenotypes. Here, we describe MetENP, an R package, and a user-friendly web application deployed at the Metabolomics Workbench site extending the metabolomics enrichment analysis to include species-specific pathway analysis, pathway enrichment scores, gene-enzyme information, and enzymatic activities of the significantly altered metabolites. MetENP provides a highly customizable workflow through various user-specified options and includes support for all metabolite species with available KEGG pathways. MetENPweb is a web application for calculating metabolite and pathway enrichment analysis.Availability and ImplementationThe MetENP package is freely available from Metabolomics Workbench GitHub: (https://github.com/metabolomicsworkbench/MetENP), the web application, is freely available at (https://www.metabolomicsworkbench.org/data/analyze.php)


2020 ◽  
Vol 36 (10) ◽  
pp. 3246-3247
Author(s):  
Vaclav Brazda ◽  
Jan Kolomaznik ◽  
Jean-Louis Mergny ◽  
Jiri Stastny

Abstract Motivation G-quadruplexes (G4) are important regulatory non-B DNA structures with therapeutic potential. A tool for rational design of mutations leading to decreased propensity for G4 formation should be useful in studying G4 functions. Although tools exist for G4 prediction, no easily accessible tool for the rational design of G4 mutations has been available. Results We developed a web-based tool termed G4Killer that is based on the G4Hunter algorithm. This new tool is a platform-independent and user-friendly application to design mutations crippling G4 propensity in a parsimonious way (i.e., keeping the primary sequence as close as possible to the original one). The tool is integrated into our DNA analyzer server and allows for generating mutated DNA sequences having the desired lowered G4Hunter score with minimal mutation steps. Availability and implementation The G4Killer web tool can be accessed at: http://bioinformatics.ibp.cz. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (9) ◽  
pp. 2943-2945 ◽  
Author(s):  
Francisco Madrid-Gambin ◽  
Sergio Oller-Moreno ◽  
Luis Fernandez ◽  
Simona Bartova ◽  
Maria Pilar Giner ◽  
...  

Abstract Summary Nuclear magnetic resonance (NMR)-based metabolomics is widely used to obtain metabolic fingerprints of biological systems. While targeted workflows require previous knowledge of metabolites, prior to statistical analysis, untargeted approaches remain a challenge. Computational tools dealing with fully untargeted NMR-based metabolomics are still scarce or not user-friendly. Therefore, we developed AlpsNMR (Automated spectraL Processing System for NMR), an R package that provides automated and efficient signal processing for untargeted NMR metabolomics. AlpsNMR includes spectra loading, metadata handling, automated outlier detection, spectra alignment and peak-picking, integration and normalization. The resulting output can be used for further statistical analysis. AlpsNMR proved effective in detecting metabolite changes in a test case. The tool allows less experienced users to easily implement this workflow from spectra to a ready-to-use dataset in their routines. Availability and implementation The AlpsNMR R package and tutorial is freely available to download from http://github.com/sipss/AlpsNMR under the MIT license. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (11) ◽  
pp. 3466-3473
Author(s):  
Maya Levy ◽  
Amit Frishberg ◽  
Irit Gat-Viks

Abstract Motivation Cell-to-cell variation has uncovered associations between cellular phenotypes. However, it remains challenging to address the cellular diversity of such associations. Results Here, we do not rely on the conventional assumption that the same association holds throughout the entire cell population. Instead, we assume that associations may exist in a certain subset of the cells. We developed CEllular Niche Association (CENA) to reliably predict pairwise associations together with the cell subsets in which the associations are detected. CENA does not rely on predefined subsets but only requires that the cells of each predicted subset would share a certain characteristic state. CENA may therefore reveal dynamic modulation of dependencies along cellular trajectories of temporally evolving states. Using simulated data, we show the advantage of CENA over existing methods and its scalability to a large number of cells. Application of CENA to real biological data demonstrates dynamic changes in associations that would be otherwise masked. Availability and implementation CENA is available as an R package at Github: https://github.com/mayalevy/CENA and is accompanied by a complete set of documentations and instructions. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


SAGE Open ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 215824401666822 ◽  
Author(s):  
Simon Grund ◽  
Oliver Lüdtke ◽  
Alexander Robitzsch

The treatment of missing data can be difficult in multilevel research because state-of-the-art procedures such as multiple imputation (MI) may require advanced statistical knowledge or a high degree of familiarity with certain statistical software. In the missing data literature, pan has been recommended for MI of multilevel data. In this article, we provide an introduction to MI of multilevel missing data using the R package pan, and we discuss its possibilities and limitations in accommodating typical questions in multilevel research. To make pan more accessible to applied researchers, we make use of the mitml package, which provides a user-friendly interface to the pan package and several tools for managing and analyzing multiply imputed data sets. We illustrate the use of pan and mitml with two empirical examples that represent common applications of multilevel models, and we discuss how these procedures may be used in conjunction with other software.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Julian Friedrich ◽  
Hans-Peter Hammes ◽  
Guido Krenning

Abstract microRNAs (miRNAs) regulate gene expression and thereby influence biological processes in health and disease. As a consequence, miRNAs are intensely studied and literature on miRNAs has been constantly growing. While this growing body of literature reflects the interest in miRNAs, it generates a challenge to maintain an overview, and the comparison of miRNAs that may function across diverse disease fields is complex due to this large number of relevant publications. To address these challenges, we designed miRetrieve, an R package and web application that provides an overview on miRNAs. By text mining, miRetrieve can characterize and compare miRNAs within specific disease fields and across disease areas. This overview provides focus and facilitates the generation of new hypotheses. Here, we explain how miRetrieve works and how it is used. Furthermore, we demonstrate its applicability in an exemplary case study and discuss its advantages and disadvantages.


Author(s):  
Daniel G Bunis ◽  
Jared Andrews ◽  
Gabriela K Fragiadakis ◽  
Trevor D Burt ◽  
Marina Sirota

Abstract Summary A visualization suite for major forms of bulk and single-cell RNAseq data in R. dittoSeq is color blindness-friendly by default, robustly documented to power ease-of-use and allows highly customizable generation of both daily-use and publication-quality figures. Availability and implementation dittoSeq is an R package available through Bioconductor via an open source MIT license. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (24) ◽  
pp. 5182-5190 ◽  
Author(s):  
Luis G Leal ◽  
Alessia David ◽  
Marjo-Riita Jarvelin ◽  
Sylvain Sebert ◽  
Minna Männikkö ◽  
...  

Abstract Motivation Integration of different omics data could markedly help to identify biological signatures, understand the missing heritability of complex diseases and ultimately achieve personalized medicine. Standard regression models used in Genome-Wide Association Studies (GWAS) identify loci with a strong effect size, whereas GWAS meta-analyses are often needed to capture weak loci contributing to the missing heritability. Development of novel machine learning algorithms for merging genotype data with other omics data is highly needed as it could enhance the prioritization of weak loci. Results We developed cNMTF (corrected non-negative matrix tri-factorization), an integrative algorithm based on clustering techniques of biological data. This method assesses the inter-relatedness between genotypes, phenotypes, the damaging effect of the variants and gene networks in order to identify loci-trait associations. cNMTF was used to prioritize genes associated with lipid traits in two population cohorts. We replicated 129 genes reported in GWAS world-wide and provided evidence that supports 85% of our findings (226 out of 265 genes), including recent associations in literature (NLGN1), regulators of lipid metabolism (DAB1) and pleiotropic genes for lipid traits (CARM1). Moreover, cNMTF performed efficiently against strong population structures by accounting for the individuals’ ancestry. As the method is flexible in the incorporation of diverse omics data sources, it can be easily adapted to the user’s research needs. Availability and implementation An R package (cnmtf) is available at https://lgl15.github.io/cnmtf_web/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document