scholarly journals Inferring cellular heterogeneity of associations from single cell genomics

2020 ◽  
Vol 36 (11) ◽  
pp. 3466-3473
Author(s):  
Maya Levy ◽  
Amit Frishberg ◽  
Irit Gat-Viks

Abstract Motivation Cell-to-cell variation has uncovered associations between cellular phenotypes. However, it remains challenging to address the cellular diversity of such associations. Results Here, we do not rely on the conventional assumption that the same association holds throughout the entire cell population. Instead, we assume that associations may exist in a certain subset of the cells. We developed CEllular Niche Association (CENA) to reliably predict pairwise associations together with the cell subsets in which the associations are detected. CENA does not rely on predefined subsets but only requires that the cells of each predicted subset would share a certain characteristic state. CENA may therefore reveal dynamic modulation of dependencies along cellular trajectories of temporally evolving states. Using simulated data, we show the advantage of CENA over existing methods and its scalability to a large number of cells. Application of CENA to real biological data demonstrates dynamic changes in associations that would be otherwise masked. Availability and implementation CENA is available as an R package at Github: https://github.com/mayalevy/CENA and is accompanied by a complete set of documentations and instructions. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Matthew Carlucci ◽  
Algimantas Kriščiūnas ◽  
Haohan Li ◽  
Povilas Gibas ◽  
Karolis Koncevičius ◽  
...  

Abstract Motivation Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. Results To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude, and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER, and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling, and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. Availability and Implementation The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (10) ◽  
pp. 1797-1798 ◽  
Author(s):  
Han Cao ◽  
Jiayu Zhou ◽  
Emanuel Schwarz

Abstract Motivation Multi-task learning (MTL) is a machine learning technique for simultaneous learning of multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are currently not available in the widely used software environment R, creating a bottleneck for their application in biomedical research. Results We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 algorithms applicable for regression, classification, joint predictor selection, task clustering, low-rank learning and incorporation of biological networks. We demonstrate the utility of the algorithms using simulated data. Availability and implementation The RMTL package is an open source R package and is freely available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (15) ◽  
pp. 4233-4239
Author(s):  
Di Ran ◽  
Shanshan Zhang ◽  
Nicholas Lytal ◽  
Lingling An

Abstract Motivation Single-cell RNA-sequencing (scRNA-seq) has become an important tool to unravel cellular heterogeneity, discover new cell (sub)types, and understand cell development at single-cell resolution. However, one major challenge to scRNA-seq research is the presence of ‘drop-out’ events, which usually is due to extremely low mRNA input or the stochastic nature of gene expression. In this article, we present a novel single-cell RNA-seq drop-out correction (scDoc) method, imputing drop-out events by borrowing information for the same gene from highly similar cells. Results scDoc is the first method that directly involves drop-out information to accounting for cell-to-cell similarity estimation, which is crucial in scRNA-seq drop-out imputation but has not been appropriately examined. We evaluated the performance of scDoc using both simulated data and real scRNA-seq studies. Results show that scDoc outperforms the existing imputation methods in reference to data visualization, cell subpopulation identification and differential expression detection in scRNA-seq data. Availability and implementation R code is available at https://github.com/anlingUA/scDoc. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (24) ◽  
pp. 5182-5190 ◽  
Author(s):  
Luis G Leal ◽  
Alessia David ◽  
Marjo-Riita Jarvelin ◽  
Sylvain Sebert ◽  
Minna Männikkö ◽  
...  

Abstract Motivation Integration of different omics data could markedly help to identify biological signatures, understand the missing heritability of complex diseases and ultimately achieve personalized medicine. Standard regression models used in Genome-Wide Association Studies (GWAS) identify loci with a strong effect size, whereas GWAS meta-analyses are often needed to capture weak loci contributing to the missing heritability. Development of novel machine learning algorithms for merging genotype data with other omics data is highly needed as it could enhance the prioritization of weak loci. Results We developed cNMTF (corrected non-negative matrix tri-factorization), an integrative algorithm based on clustering techniques of biological data. This method assesses the inter-relatedness between genotypes, phenotypes, the damaging effect of the variants and gene networks in order to identify loci-trait associations. cNMTF was used to prioritize genes associated with lipid traits in two population cohorts. We replicated 129 genes reported in GWAS world-wide and provided evidence that supports 85% of our findings (226 out of 265 genes), including recent associations in literature (NLGN1), regulators of lipid metabolism (DAB1) and pleiotropic genes for lipid traits (CARM1). Moreover, cNMTF performed efficiently against strong population structures by accounting for the individuals’ ancestry. As the method is flexible in the incorporation of diverse omics data sources, it can be easily adapted to the user’s research needs. Availability and implementation An R package (cnmtf) is available at https://lgl15.github.io/cnmtf_web/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (11) ◽  
pp. 1901-1906 ◽  
Author(s):  
Mary D Fortune ◽  
Chris Wallace

Abstract Motivation Methods for analysis of GWAS summary statistics have encouraged data sharing and democratized the analysis of different diseases. Ideal validation for such methods is application to simulated data, where some ‘truth’ is known. As GWAS increase in size, so does the computational complexity of such evaluations; standard practice repeatedly simulates and analyses genotype data for all individuals in an example study. Results We have developed a novel method based on an alternative approach, directly simulating GWAS summary data, without individual data as an intermediate step. We mathematically derive the expected statistics for any set of causal variants and their effect sizes, conditional upon control haplotype frequencies (available from public reference datasets). Simulation of GWAS summary output can be conducted independently of sample size by simulating random variates about these expected values. Across a range of scenarios, our method, produces very similar output to that from simulating individual genotypes with a substantial gain in speed even for modest sample sizes. Fast simulation of GWAS summary statistics will enable more complete and rapid evaluation of summary statistic methods as well as opening new potential avenues of research in fine mapping and gene set enrichment analysis. Availability and implementation Our method is available under a GPL license as an R package from http://github.com/chr1swallace/simGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Giacomo Baruzzo ◽  
Ilaria Patuzzi ◽  
Barbara Di Camillo

Abstract Motivation Single cell RNA-seq (scRNA-seq) count data show many differences compared with bulk RNA-seq count data, making the application of many RNA-seq pre-processing/analysis methods not straightforward or even inappropriate. For this reason, the development of new methods for handling scRNA-seq count data is currently one of the most active research fields in bioinformatics. To help the development of such new methods, the availability of simulated data could play a pivotal role. However, only few scRNA-seq count data simulators are available, often showing poor or not demonstrated similarity with real data. Results In this article we present SPARSim, a scRNA-seq count data simulator based on a Gamma-Multivariate Hypergeometric model. We demonstrate that SPARSim allows to generate count data that resemble real data in terms of count intensity, variability and sparsity, performing comparably or better than one of the most used scRNA-seq simulator, Splat. In particular, SPARSim simulated count matrices well resemble the distribution of zeros across different expression intensities observed in real count data. Availability and implementation SPARSim R package is freely available at http://sysbiobig.dei.unipd.it/? q=SPARSim and at https://gitlab.com/sysbiobig/sparsim. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Adrian L Hauber ◽  
Raphael Engesser ◽  
Joep Vanlier ◽  
Jens Timmer

Abstract Motivation Apparent time delays in partly observed, biochemical reaction networks can be modeled by lumping a more complex reaction into a series of linear reactions often referred to as the linear chain trick. Since most delays in biochemical reactions are no true, hard delays but a consequence of complex unobserved processes, this approach often more closely represents the true system compared to delay differential equations. In this paper, we address the question of how to select the optimal number of additional equations, i.e. the chain length. Results We derive a criterion based on parameter identifiability to infer chain lengths and compare this method to choosing the model with a chain length that leads to the best fit in a maximum likelihood sense, which corresponds to optimising the Bayesian information criterion. We evaluate performance with simulated data as well as with measured biological data for a model of JAK2/STAT5 signalling and access the influence of different model structures and data characteristics. Our analysis revealed that the proposed method features a superior performance when applied to biological models and data compared to choosing the model that maximises the likelihood. Availability Models and data used for simulations are available at https://github.com/Data2Dynamics/d2d and http://jeti.uni-freiburg.de/PNAS_Swameye_Data. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Krzysztof J Szkop ◽  
David S Moss ◽  
Irene Nobeli

Abstract Motivation We present flexible Modeling of Alternative PolyAdenylation (flexiMAP), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data. Results We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognized caveats of existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis. Availability and implementation The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP. Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Xiaoyu Liang ◽  
Ying Hu ◽  
Chunhua Yan ◽  
Ke Xu

Abstract Motivation High-quality imaging analyses have been proposed to drive innovation in biomedical and biological research. However, the application of images remains underexploited because of the limited capacity of human vision and the challenges in extracting quantitative information from images. Computationally extracting quantitative information from images is critical to overcoming this limitation. Here, we present a novel R package, i2d, to simulate data from an image based on digital convolution. Results The R package i2d allows users to transform an image into a simulated dataset that can be used to extract and analyze complex information in biomedical and biological research. The package also includes three novel and efficient methods for graph clustering based on simulated data, which can be used to dissect complex gene networks into sub-clusters that have similar biological functions. Availability and implementation The code, the documentation, a tutorial and example data are available on an open source at: github.com/XiaoyuLiang/i2d. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Ilya Korsunsky ◽  
Aparna Nathan ◽  
Nghia Millard ◽  
Soumya Raychaudhuri

AbstractSummaryThe related Wilcoxon rank sum test and area under the receiver operator curve are ubiquitous in high dimensional biological data analysis. Current implementations do not scale readily to the increasingly large datasets generated by novel high-throughput technologies, such as single cell RNAseq. We introduce a simple and scalable implementation of both analyses, available through the R package Presto. Presto scales to big datasets, with functions optimized for both dense and sparse matrices. On a sparse dataset of 1 million observations, 10 groups, and 1,000 features, Presto performed both rank-sum and auROC analyses in only 17 seconds, compared to 6.4 hours with base R functions. Presto also includes functions to seamlessly integrate with the Seurat single cell analysis pipeline and the Bioconductor SingleCellExperiment class. Presto enables the use of robust classical analyses on big data with a simple interface and optimized implementation.Availability and ImplementationPresto is available as an R package at https://github.com/immunogenomics/[email protected] InformationVignettes are available with the Presto package.


Sign in / Sign up

Export Citation Format

Share Document