RaNA-Seq: Interactive RNA-Seq analysis from FASTQ files to functional analysis

2019 ◽  
Author(s):  
Carlos Prieto ◽  
David Barrios

Abstract Summary RaNA-Seq is a cloud platform for the rapid analysis and visualization of RNA-Seq data. It performs a full analysis in minutes by quantifying FASTQ files, calculating quality control metrics, running differential expression analyses and enabling the explanation of results with functional analyses. Our analysis pipeline applies generally accepted and reproducible protocols that can be applied with two simple steps in its web interface. Analysis results are presented as interactive graphics and reports, ready for their interpretation and publication. Availability RaNA-Seq web service is freely available online at https://ranaseq.eu Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
Christina Huan Shi ◽  
Kevin Y. Yip

AbstractK-mer counting has many applications in sequencing data processing and analysis. However, sequencing errors can produce many false k-mers that substantially increase the memory requirement during counting. We propose a fast k-mer counting method, CQF-deNoise, which has a novel component for dynamically identifying and removing false k-mers while preserving counting accuracy. Compared with four state-of-the-art k-mer counting methods, CQF-deNoise consumed 49-76% less memory than the second best method, but still ran competitively fast. The k-mer counts from CQF-deNoise produced cell clusters from single-cell RNA-seq data highly consistent with CellRanger but required only 5% of the running time at the same memory consumption, suggesting that CQF-deNoise can be used for a preview of cell clusters for an early detection of potential data problems, before running a much more time-consuming full analysis pipeline.


2020 ◽  
Vol 36 (9) ◽  
pp. 2705-2711 ◽  
Author(s):  
Gianvito Urgese ◽  
Emanuele Parisi ◽  
Orazio Scicolone ◽  
Santa Di Cataldo ◽  
Elisa Ficarra

Abstract Motivation High-throughput next-generation sequencing can generate huge sequence files, whose analysis requires alignment algorithms that are typically very demanding in terms of memory and computational resources. This is a significant issue, especially for machines with limited hardware capabilities. As the redundancy of the sequences typically increases with coverage, collapsing such files into compact sets of non-redundant reads has the 2-fold advantage of reducing file size and speeding-up the alignment, avoiding to map the same sequence multiple times. Method BioSeqZip generates compact and sorted lists of alignment-ready non-redundant sequences, keeping track of their occurrences in the raw files as well as of their quality score information. By exploiting a memory-constrained external sorting algorithm, it can be executed on either single- or multi-sample datasets even on computers with medium computational capabilities. On request, it can even re-expand the compacted files to their original state. Results Our extensive experiments on RNA-Seq data show that BioSeqZip considerably brings down the computational costs of a standard sequence analysis pipeline, with particular benefits for the alignment procedures that typically have the highest requirements in terms of memory and execution time. In our tests, BioSeqZip was able to compact 2.7 billion of reads into 963 million of unique tags reducing the size of sequence files up to 70% and speeding-up the alignment by 50% at least. Availability and implementation BioSeqZip is available at https://github.com/bioinformatics-polito/BioSeqZip. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
William Goh1 ◽  
Marek Mutwil1

Abstract Motivation There are now more than two million RNA sequencing experiments for plants, animals, bacteria and fungi publicly available, allowing us to study gene expression within and across species and kingdoms. However, the tools allowing the download, quality control and annotation of this data for more than one species at a time are currently missing. Results To remedy this, we present the Large-Scale Transcriptomic Analysis Pipeline in Kingdom of Life (LSTrAP-Kingdom) pipeline, which we used to process 134,521 RNA-seq samples, achieving ∼12,000 processed samples per day. Our pipeline generated quality-controlled, annotated gene expression matrices that rival the manually curated gene expression data in identifying functionally-related genes. Availability LSTrAP-Kingdom is available from: https://github.com/wirriamm/plants-pipeline and is fully implemented in Python and Bash. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Wenbin Ye ◽  
Tao Liu ◽  
Hongjuan Fu ◽  
Congting Ye ◽  
Guoli Ji ◽  
...  

Abstract Motivation Alternative polyadenylation (APA) has been widely recognized as a widespread mechanism modulated dynamically. Studies based on 3′ end sequencing and/or RNA-seq have profiled poly(A) sites in various species with diverse pipelines, yet no unified and easy-to-use toolkit is available for comprehensive APA analyses. Results We developed an R package called movAPA for modeling and visualization of dynamics of alternative polyadenylation across biological samples. movAPA incorporates rich functions for preprocessing, annotation and statistical analyses of poly(A) sites, identification of poly(A) signals, profiling of APA dynamics and visualization. Particularly, seven metrics are provided for measuring the tissue-specificity or usages of APA sites across samples. Three methods are used for identifying 3′ UTR shortening/lengthening events between conditions. APA site switching involving non-3′ UTR polyadenylation can also be explored. Using poly(A) site data from rice and mouse sperm cells, we demonstrated the high scalability and flexibility of movAPA in profiling APA dynamics across tissues and single cells. Availability and implementation https://github.com/BMILAB/movAPA. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Yang Xu ◽  
Priyojit Das ◽  
Rachel Patton McCord

Abstract Motivation Deep learning approaches have empowered single-cell omics data analysis in many ways and generated new insights from complex cellular systems. As there is an increasing need for single cell omics data to be integrated across sources, types, and features of data, the challenges of integrating single-cell omics data are rising. Here, we present an unsupervised deep learning algorithm that learns discriminative representations for single-cell data via maximizing mutual information, SMILE (Single-cell Mutual Information Learning). Results Using a unique cell-pairing design, SMILE successfully integrates multi-source single-cell transcriptome data, removing batch effects and projecting similar cell types, even from different tissues, into the shared space. SMILE can also integrate data from two or more modalities, such as joint profiling technologies using single-cell ATAC-seq, RNA-seq, DNA methylation, Hi-C, and ChIP data. When paired cells are known, SMILE can integrate data with unmatched feature, such as genes for RNA-seq and genome wide peaks for ATAC-seq. Integrated representations learned from joint profiling technologies can then be used as a framework for comparing independent single source data. Supplementary information Supplementary data are available at Bioinformatics online. The source code of SMILE including analyses of key results in the study can be found at: https://github.com/rpmccordlab/SMILE.


Author(s):  
Zhuohang Yu ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Summary MetaADEDB is an online database we developed to integrate comprehensive information on adverse drug events (ADEs). The first version of MetaADEDB was released in 2013 and has been widely used by researchers. However, it has not been updated for more than seven years. Here, we reported its second version by collecting more and newer data from the U.S. FDA Adverse Event Reporting System (FAERS) and Canada Vigilance Adverse Reaction Online Database, in addition to the original three sources. The new version consists of 744 709 drug–ADE associations between 8498 drugs and 13 193 ADEs, which has an over 40% increase in drug–ADE associations compared to the previous version. Meanwhile, we developed a new and user-friendly web interface for data search and analysis. We hope that MetaADEDB 2.0 could provide a useful tool for drug safety assessment and related studies in drug discovery and development. Availability and implementation The database is freely available at: http://lmmd.ecust.edu.cn/metaadedb/. Supplementary information Supplementary data are available at Bioinformatics online.


2013 ◽  
Vol 167 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Jung Soh ◽  
Xiaoli Dong ◽  
Sean M. Caffrey ◽  
Gerrit Voordouw ◽  
Christoph W. Sensen

2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


Sign in / Sign up

Export Citation Format

Share Document