Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modifications†

Author(s):  
Magdalena Szymanska ◽  
Sarah Manthe ◽  
Ketan Shrestha ◽  
Eliezer Girsh ◽  
Avi Harlev ◽  
...  

Abstract Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.

2012 ◽  
Vol 112 (5) ◽  
pp. 816-823 ◽  
Author(s):  
Rubén Martínez-Romero ◽  
Ana Cañuelo ◽  
Eva Siles ◽  
F. Javier Oliver ◽  
Esther Martínez-Lara

The physiological response to hypobaric hypoxia represents a complex network of biochemical pathways in which the nitrergic system plays an important role. Previous studies have provided evidence for an interplay between the hypoxia-inducible factor-1 (HIF-1) and poly(ADP-ribose) polymerase-1 (PARP-1) under hypoxia. Here, we evaluate the potential involvement of nitric oxide (NO) in the cross talk between these two proteins. With this aim, we studied comparatively the effect of pharmacological inhibitors of NO production or PARP activity in the response of the mouse cerebral cortex to 4 h of exposure to a simulated altitude of 31,000 ft. Particularly, we analyzed the NO and reactive oxygen species production, the expression of NO synthase (NOS) isoforms, PARP-1 activity, HIF-1α expression and HIF-1 transcriptional activity, the protein level of the factor inhibiting HIF, and, finally, beclin-1 and fractin expression, as markers of cellular damage. Our results demonstrate that the reduction of NO level did not affect reactive oxygen species production but significantly 1) dampened the posthypoxic increase in neuronal NOS and inducible NOS expression without altering endothelial NOS protein level; 2) prevented PARP activation; 3) decreased HIF-1α response to hypoxia; 4) achieved a higher long-term HIF-1 transcriptional activity by reducing factor inhibiting HIF expression; and 5) reduced hypoxic damage. The pharmacological inhibition of PARP reproduced the NOS expression pattern and the HIF-1α response observed in NOS-inhibited mice, supporting its involvement in the NO-dependent regulation of hypoxia. As a whole, these results provide new data about the molecular mechanism underlying the beneficial effects of controlling NO production under hypobaric hypoxic conditions.


Gene ◽  
2005 ◽  
Vol 350 (1) ◽  
pp. 89-98 ◽  
Author(s):  
O.V. Razorenova ◽  
A.V. Ivanov ◽  
A.V. Budanov ◽  
P.M. Chumakov

ChemInform ◽  
2015 ◽  
Vol 46 (24) ◽  
pp. no-no
Author(s):  
Hiroyuki Nakamura ◽  
Lisa Tazaki ◽  
Daisuke Kanoh ◽  
Shinichi Sato

2015 ◽  
Vol 112 (9) ◽  
pp. E957-E965 ◽  
Author(s):  
Guangwei Liu ◽  
Yujing Bi ◽  
Lixiang Xue ◽  
Yan Zhang ◽  
Hui Yang ◽  
...  

The differentiation of naive CD4+ T cells into distinct lineages plays critical roles in mediating adaptive immunity or maintaining immune tolerance. In addition to being a first line of defense, the innate immune system also actively instructs adaptive immunity through antigen presentation and immunoregulatory cytokine production. Here we found that sirtuin 1 (SIRT1), a type III histone deacetylase, plays an essential role in mediating proinflammatory signaling in dendritic cells (DCs), consequentially modulating the balance of proinflammatory T helper type 1 (TH1) cells and antiinflammatory Foxp3+ regulatory T cells (Treg cells). Genetic deletion of SIRT1 in DCs restrained the generation of Treg cells while driving TH1 development, resulting in an enhanced T-cell–mediated inflammation against microbial responses. Beyond this finding, SIRT1 signaled through a hypoxia-inducible factor-1 alpha (HIF1α)-dependent pathway, orchestrating the reciprocal TH1 and Treg lineage commitment through DC-derived IL-12 and TGF-β1. Our studies implicates a DC-based SIRT1–HIF1α metabolic checkpoint in controlling T-cell lineage specification.


2004 ◽  
Vol 51 (3) ◽  
pp. 563-585 ◽  
Author(s):  
Anna Zagórska ◽  
Józef Dulak

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that functions as a master regulator of cellular and systemic oxygen homeostasis. It consists of two constitutively produced subunits: HIF-1alpha and HIF-1beta. Under normoxic conditions HIF-1alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation of the alpha subunit. Additionally, hydroxylation of an asparaginyl residue blocks the transcriptional activity of HIF-1 due to inhibition of its interaction with co-activators. In contrast, under hypoxic conditions, abolition of prolyl hydroxylation results in HIF-1alpha stabilization, whereas the lack of asparaginyl hydroxylation allows the transcriptional activity. Additionally, the transcriptional activity may be modulated by phosphorylation or redox modification of HIF-1. Despite its name, HIF-1 is induced not only in response to reduced oxygen availability but also by other stimulants, such as nitric oxide, various growth factors, or direct inhibitors of prolyl and asparaginyl hydroxylases. Therefore, it seems to be a crucial transcription factor elicited by a wide range of stresses such as impaired oxygenation, inflammation, energy deprivation, or intensive proliferation. However, the mechanisms of normoxic activation, as well as of oxygen sensing, are not yet fully known. Further understanding of the processes that control HIF-1 activity will be crucial for the development of new diagnostic and therapeutic strategies.


2016 ◽  
Vol 9 (430) ◽  
pp. ra56-ra56 ◽  
Author(s):  
John W. Bullen ◽  
Irina Tchernyshyov ◽  
Ronald J. Holewinski ◽  
Lauren DeVine ◽  
Fan Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document