Conditional Deletion of Pgrmc1 in Sertoli Cells Disrupts Germ Cell Development and Steroidogenesis in the Male.

2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 135-135
Author(s):  
Johnathan Broady ◽  
Jeanene DeAvila ◽  
John J. Peluso ◽  
James K. Pru ◽  
Derek J. McLean
2009 ◽  
Vol 297 (4) ◽  
pp. E907-E914 ◽  
Author(s):  
María F. Riera ◽  
María N. Galardo ◽  
Eliana H. Pellizzari ◽  
Silvina B. Meroni ◽  
Selva B. Cigorraga

Sertoli cells provide the physical support and the necessary environment for germ cell development. Among the products secreted by Sertoli cells, lactate, the preferred energy substrate for spermatocytes and spermatids, is present. Considering the essential role of lactate on germ cell metabolism, it is supposed that Sertoli cells must ensure its production even in adverse conditions, such as those that would result from a decrease in glucose levels in the extracellular milieu. The aim of the present study was to investigate 1) a possible effect of glucose deprivation on glucose uptake and on the expression of glucose transporters in rat Sertoli cells and 2) the participation of different signal transduction pathways in the above-mentioned regulation. Results obtained show that decreasing glucose levels in Sertoli cell culture medium provokes 1) an increase in glucose uptake accompanied by only a slight decrease in lactate production, 2) an increase in GLUT1 and a decrease in GLUT3 expression, and 3) an activation of AMP-activated protein kinase (AMPK)-, phosphatidylinositol 3-kinase (PI3K)/PKB-, and p38 MAPK-dependent pathways. Additionally, by using specific inhibitors of these pathways, a possible participation of AMPK- and p38MAPK-dependent pathways in the regulation of glucose uptake and GLUT1 expression is shown. These results suggest that Sertoli cells adapt to conditions of glucose deprivation to ensure an adequate lactate concentration in the microenvironment where germ cell development occurs.


2018 ◽  
Vol 99 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Michael D Griswold

Abstract The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.


2009 ◽  
Vol 296 (5) ◽  
pp. E1022-E1028 ◽  
Author(s):  
Charles M. Allan ◽  
Patrick Lim ◽  
Mathew Robson ◽  
Jenny Spaliviero ◽  
David J. Handelsman

We have characterized the in vivo actions of human wild-type FSH receptor (FSHR) overexpressed in Sertoli cells of transgenic (Tg) mice ( TgFSHRwt) compared with transgenic overexpression of the human activated mutant FSHR*D567G ( TgFSHR*D567G). Testicular TgFSHRwt expression significantly elevated specific FSH binding (>2-fold, P < 0.01) relative to nontransgenic testes, similar to increased FSH binding in TgFSHR*D567G testes. Isolated TgFSHRwt Sertoli cells exhibited higher FSH-stimulated cAMP levels compared with non- Tg or TgFSHR*D567G cells but did not display the elevated FSH-independent basal cAMP levels found in TgFSHR*D567G Sertoli cells. Furthermore, Sertoli cell overexpression of TgFSHR*D567G but not TgFSHRwt allowed promiscuous cAMP responses to human chorionic gonadotropin (300 IU/ml) and TSH (30 mIU/ml), demonstrating increased constitutive signaling and altered glycoprotein hormone specificity via the intracellular D567G substitution rather than FSHR overexpression. Despite elevating Sertoli cell FSH sensitivity, overexpression of TgFSHRwt had no detectable effect upon normal testis function and did not stimulate Sertoli and germ cell development in testes of gonadotropin-deficient hypogonadal ( hpg) mice, in contrast to the increased meiotic and postmeiotic germ cell development in TgFSHR*D567G hpg testes. Increased steroidogenic potential of TgFSHR*D567G hpg testes was demonstrated by elevated Cyp11a1 and Star expression, which was not detected in TgFSHRwt hpg testes. Androgen-regulated and Sertoli cell-specific Rhox5 gene expression was increased in TgFSHR*D567G but not TgFSHRwt hpg testes, providing evidence of elevated LH-independent androgen activity due to mutant FSHR*D567G. Hence, transgenic FSHR overexpression in Sertoli cells revealed that the D567G mutation confers autonomous signaling and steroidogenic activity in vivo as well as promiscuous glycoprotein hormone receptor activation, independently of FSHR overexpression alone.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Chenglai Fu ◽  
Tomas Rojas ◽  
Alfred C. Chin ◽  
Weiwei Cheng ◽  
Isaac A. Bernstein ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009265
Author(s):  
Yongjuan Guan ◽  
Scott Keeney ◽  
Devanshi Jain ◽  
P. Jeremy Wang

Piwi-interacting RNAs (piRNAs) play critical roles in protecting germline genome integrity and promoting normal spermiogenic differentiation. In mammals, there are two populations of piRNAs: pre-pachytene and pachytene. Transposon-rich pre-pachytene piRNAs are expressed in fetal and perinatal germ cells and are required for retrotransposon silencing, whereas transposon-poor pachytene piRNAs are expressed in spermatocytes and round spermatids and regulate mRNA transcript levels. MOV10L1, a germ cell-specific RNA helicase, is essential for the production of both populations of piRNAs. Although the requirement of the RNA helicase domain located in the MOV10L1 C-terminal region for piRNA biogenesis is well known, its large N-terminal region remains mysterious. Here we report a novel Mov10l1 mutation, named yama, in the Mov10l1 N-terminal region. The yama mutation results in a single amino acid substitution V229E. The yama mutation causes meiotic arrest, de-repression of transposable elements, and male sterility because of defects in pre-pachytene piRNA biogenesis. Moreover, restricting the Mov10l1 mutation effects to later stages in germ cell development by combining with a postnatal conditional deletion of a complementing wild-type allele causes absence of pachytene piRNAs, accumulation of piRNA precursors, polar conglomeration of piRNA pathway proteins in spermatocytes, and spermiogenic arrest. Mechanistically, the V229E substitution in MOV10L1 reduces its interaction with PLD6, an endonuclease that generates the 5′ ends of piRNA intermediates. Our results uncover an important role for the MOV10L1-PLD6 interaction in piRNA biogenesis throughout male germ cell development.


Sign in / Sign up

Export Citation Format

Share Document