scholarly journals A Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risks

Biostatistics ◽  
2020 ◽  
Author(s):  
Yanxun Xu ◽  
Daniel Scharfstein ◽  
Peter Müller ◽  
Michael Daniels

Summary We develop a Bayesian nonparametric (BNP) approach to evaluate the causal effect of treatment in a randomized trial where a nonterminal event may be censored by a terminal event, but not vice versa (i.e., semi-competing risks). Based on the idea of principal stratification, we define a novel estimand for the causal effect of treatment on the nonterminal event. We introduce identification assumptions, indexed by a sensitivity parameter, and show how to draw inference using our BNP approach. We conduct simulation studies and illustrate our methodology using data from a brain cancer trial. The R code implementing our model and algorithm is available for download at https://github.com/YanxunXu/BaySemiCompeting.

2019 ◽  
Vol 16 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Lingyun Ji ◽  
Lisa M McShane ◽  
Mark Krailo ◽  
Richard Sposto

Background/Aims Biomarker-stratified outcome-adaptive randomization trials, in which randomization probabilities depend on both biomarker value and outcomes of previously treated patients, are receiving increased attention in oncology research. Data from these trials can also form the basis of investigation of additional biomarkers that may not have been incorporated into the original trial design. In this article, we investigate the validity of a standard analytical method that utilizes data from a biomarker-stratified outcome-adaptive randomization trial to assess the effect of a newly identified biomarker on patient outcomes. Methods In the context of an ancillary biomarker study for a two-arm phase II trial with a response endpoint, we conduct analytic and simulation studies to investigate bias in estimated biomarker effects under outcome-adaptive randomization. Conditions under which bias arises and magnitude of the bias are examined in several settings. We then propose unbiased estimators of biomarker effects with appropriate variance estimators. Results We demonstrate that use of biomarker-stratified outcome-adaptive randomization perturbs the patient population and treatment assignments. Consequently, application of standard analysis methods to data from an outcome-adaptive randomization trial either to estimate prognostic effect of a new biomarker in uniformly treated patients or to estimate effect of treatment in relation to the new biomarker can lead to substantially biased estimates. The proposed adjusted estimators are asymptotically unbiased, and the proposed variance estimators correctly reflect the sample variability in the estimators. Conclusion This article demonstrates existence of bias when standard, naïve statistical methods are utilized to assess biomarker effects using data from a biomarker-stratified outcome-adaptive randomization trial, and hence that results from naïve analyses must be interpreted with great caution. These findings highlight that, in an era where data and specimens are increasingly being shared for biomarker studies, care must be taken to document and understand implications of the study design under which specimens or data have been obtained.


2014 ◽  
Vol 17 (4) ◽  
Author(s):  
Raymond K. Walters ◽  
Charles Laurin ◽  
Gitta H. Lubke

Epistasis is a growing area of research in genome-wide studies, but the differences between alternative definitions of epistasis remain a source of confusion for many researchers. One problem is that models for epistasis are presented in a number of formats, some of which have difficult-to-interpret parameters. In addition, the relation between the different models is rarely explained. Existing software for testing epistatic interactions between single-nucleotide polymorphisms (SNPs) does not provide the flexibility to compare the available model parameterizations. For that reason we have developed an R package for investigating epistatic and penetrance models, EpiPen, to aid users who wish to easily compare, interpret, and utilize models for two-locus epistatic interactions. EpiPen facilitates research on SNP-SNP interactions by allowing the R user to easily convert between common parametric forms for two-locus interactions, generate data for simulation studies, and perform power analyses for the selected model with a continuous or dichotomous phenotype. The usefulness of the package for model interpretation and power analysis is illustrated using data on rheumatoid arthritis.


2020 ◽  
Vol 8 (1) ◽  
pp. 54-69
Author(s):  
Peter B. Gilbert ◽  
Bryan S. Blette ◽  
Bryan E. Shepherd ◽  
Michael G. Hudgens

AbstractWhile the HVTN 505 trial showed no overall efficacy of the tested vaccine to prevent HIV infection over placebo, markers measuring immune response to vaccination were strongly correlated with infection. This finding generated the hypothesis that some marker-defined vaccinated subgroups were partially protected whereas others had their risk increased. This hypothesis can be assessed using the principal stratification framework (Frangakis and Rubin, 2002) for studying treatment effect modification by an intermediate response variable, using methods in the sub-field of principal surrogate (PS) analysis that studies multiple principal strata. Unfortunately, available methods for PS analysis require an augmented study design not available in HVTN 505, and make untestable structural risk assumptions, motivating a need for more robust PS methods. Fortunately, another sub-field of principal stratification, survivor average causal effect (SACE) analysis (Rubin, 2006) – which studies effects in a single principal stratum – provides many methods not requiring an augmented design and making fewer assumptions. We show how, for a binary intermediate response variable, methods developed for SACE analysis can be adapted to PS analysis, providing new and more robust PS methods. Application to HVTN 505 supports that the vaccine partially protected individuals with vaccine-induced T-cells expressing certain combinations of functions.


Author(s):  
Grace Ashley ◽  
Nii Attoh-Okine

Every year, the U.S. government provides several billions of dollars in the form of federal funding for transportation services in the U.S.A. Decision making with regard to the use of these funds largely depends on performance indicators like average annual daily traffic (AADT). In this paper, Bayesian nonparametric models are developed through machine learning for the estimation of AADT on bridges. The effect of hyperparameter choice on the accuracy of estimations produced by Bayesian nonparametric models is also assessed. The predictions produced using the Bayesian nonparametric approach are then compared with predictions from a popular Frequentist approach for the selected bridges. Evaluation metrics like the mean absolute percentage error are subsequently employed in model evaluation. Based on the results, the best methods for AADT forecasting for the selected bridges are recommended.


2015 ◽  
Vol 3 (2) ◽  
pp. 157-175 ◽  
Author(s):  
Peter B. Gilbert ◽  
Erin E. Gabriel ◽  
Ying Huang ◽  
Ivan S.F. Chan

AbstractA common problem of interest within a randomized clinical trial is the evaluation of an inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future studies without needing to collect the clinical endpoint data. Within the principal stratification framework for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to the “principal effects” or “causal effect predictiveness (CEP)” surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the relationship between these criteria and the consistency criterion (i.e. assurance against the “surrogate paradox”). This includes the result that ACN plus a strong version of ACS generally do not imply the Prentice definition nor the consistency criterion, but they do have these implications in special cases. Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results highlight that assumptions about the treatment effect on the clinical endpoint before the candidate surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the principal strata subpopulations for inference are identifiable from the observable data, in which cases the principal stratification framework has relatively high utility for the purpose of effect modification analysis and is closely connected to the treatment marker selection problem. The results are illustrated with application to a vaccine efficacy trial, where ACN and ACS for an antibody marker are found to be consistent with the data and hence support the Prentice definition and consistency.


Biostatistics ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 172-185 ◽  
Author(s):  
Pål Christie Ryalen ◽  
Mats Julius Stensrud ◽  
Sophie Fosså ◽  
Kjetil Røysland

Abstract In marginal structural models (MSMs), time is traditionally treated as a discrete parameter. In survival analysis on the other hand, we study processes that develop in continuous time. Therefore, Røysland (2011. A martingale approach to continuous-time marginal structural models. Bernoulli 17, 895–915) developed the continuous-time MSMs, along with continuous-time weights. The continuous-time weights are conceptually similar to the inverse probability weights that are used in discrete time MSMs. Here, we demonstrate that continuous-time MSMs may be used in practice. First, we briefly describe the causal model assumptions using counting process notation, and we suggest how causal effect estimates can be derived by calculating continuous-time weights. Then, we describe how additive hazard models can be used to find such effect estimates. Finally, we apply this strategy to compare medium to long-term differences between the two prostate cancer treatments radical prostatectomy and radiation therapy, using data from the Norwegian Cancer Registry. In contrast to the results of a naive analysis, we find that the marginal cumulative incidence of treatment failure is similar between the strategies, accounting for the competing risk of other death.


2015 ◽  
Vol 206 (4) ◽  
pp. 332-338 ◽  
Author(s):  
Jay C. Fournier ◽  
Robert J. DeRubeis ◽  
Jay Amsterdam ◽  
Richard C. Shelton ◽  
Steven D. Hollon

BackgroundDepression can adversely affect employment status.AimsTo examine whether there is a relative advantage of cognitive therapy or antidepressant medication in improving employment status following treatment, using data from a previously reported trial.MethodRandom assignment to cognitive therapy (n = 48) or the selective serotonin reuptake inhibitor paroxetine (n = 93) for 4 months; treatment responders were followed for up to 24 months. Differential effects of treatment on employment status were examined.ResultsAt the end of 28 months, cognitive therapy led to higher rates of full-time employment (88.9%) than did antidepressant medication among treatment responders (70.8%), χ21 = 5.78, P = 0.02, odds ratio (OR) = 5.66, 95% CI 1.16–27.69. In the shorter-term, the main effect of treatment on employment status was not significant following acute treatment (χ21 = 1.74, P = 0.19, OR = 1.77, 95% CI 0.75–4.17); however, we observed a site×treatment interaction (χ21 = 6.87, P = 0.009) whereby cognitive therapy led to a higher rate of full-time employment at one site but not at the other.ConclusionsCognitive therapy may produce greater improvements in employment v. medication, particularly over the longer term.


2021 ◽  
Author(s):  
◽  
Seth Woods

Teacher stress has been studied for decades and the negative outcomes of too much stress are well known, such as burnout and lack of teacher retention. The present study focuses on the relationship between teacher stress and teacher job satisfaction. The Transactional Model of stress specifies that coping must be accounted for when considering a person's stress reaction, as a person's coping capacity or resources are what determines whether stress reaction will occur. The present study seeks to answer the question: Does coping moderate the relationship between teacher stress and job satisfaction? Moderation analysis was conducted using data from randomized trials examining a leadership training program. The results showed that coping moderated the relationship between stress and job satisfaction. Adding to the importance of this study for practitioners is that all three constructs (stress, coping, and job satisfaction) were measured using single items, making it easy for practitioners to measure among their staff.


2019 ◽  
Author(s):  
Donna Coffman ◽  
Jiangxiu Zhou ◽  
Xizhen Cai

Abstract Background Causal effect estimation with observational data is subject to bias due to confounding, which is often controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle missing values in covariates.Method Several approaches have been proposed for handling covariate missingness, including multiple imputation (MI), multiple imputation with missingness pattern (MIMP), and treatment mean imputation. However, there are other potentially useful approaches that have not been evaluated, including single imputation (SI) + prediction error (PE), SI+PE + parameter uncertainty (PU), and Generalized Boosted Modeling (GBM), which is a nonparametric approach for estimating propensity scores in which missing values are automatically handled in the estimation using a surrogate split method. To evaluate the performance of these approaches, a simulation study was conducted.Results Results suggested that SI+PE, SI+PE+PU, MI, and MIMP perform almost equally well and better than treatment mean imputation and GBM in terms of bias; however, MI and MIMP account for the additional uncertainty of imputing the missingness.Conclusions Applying GBM to the incomplete data and relying on the surrogate split approach resulted in substantial bias. Imputation prior to implementing GBM is recommended.


Sign in / Sign up

Export Citation Format

Share Document