Phylogenomic insights into the Fascicularia-Ochagavia group (Bromelioideae, Bromeliaceae)

2019 ◽  
Vol 192 (4) ◽  
pp. 642-655
Author(s):  
Juraj Paule ◽  
Roswitha Schmickl ◽  
Tomáš Fér ◽  
Sabine Matuszak-Renger ◽  
Heidemarie Halbritter ◽  
...  

Abstract Ochagavia (four species) and Fascicularia (one species) form a well-supported clade of the early-diverging Bromelioideae. The two genera are morphologically similar, but they can be easily discerned on the basis of generative characters. Besides the species distributed on the Chilean mainland, the group includes O. elegans, endemic to the Robinson Crusoe Island of the Juan Fernández Islands. In previous molecular phylogenetic studies, O. elegans formed a sister clade to the remainder of Fascicularia and Ochagavia. A phylogenomic approach, including nearly complete and, in five cases, full plastomes (c. 160 kbp) and the nuclear rDNA cistron (c. 6 kbp), and scanning electron microscope (SEM) images of pollen were used to analyse relationships in the Fascicularia-Ochagavia group. Plastome and nuclear trees were largely congruent and supported previous phylogenetic analyses of O. elegans being sister to the remainder of the group. A divergent phylogenetic position was suggested for O. carnea using different organellar trees. SEM analysis of pollen supported the division of Fascicularia and Ochagavia. Evolutionary and taxonomic implications of our results are discussed.

2011 ◽  
Vol 278 (1719) ◽  
pp. 2791-2797 ◽  
Author(s):  
Guillaume Billet ◽  
Lionel Hautier ◽  
Christian de Muizon ◽  
Xavier Valentin

The cingulates of the mammalian order Xenarthra present a typical case of disagreement between molecular and morphological phylogenetic studies. We report here the discovery of two new skulls from the Late Oligocene Salla Beds of Bolivia (approx. 26 Ma), which are the oldest known well-preserved cranial remains of the group. A new taxon is described: Kuntinaru boliviensis gen. et sp. nov. A phylogenetic analysis clusters K. boliviensis together with the armadillo subfamily Tolypeutinae. These skulls document an early spotty occurrence for the Tolypeutinae at 26 Ma, in agreement with the temporal predictions of previous molecular studies. The fossil record of tolypeutines is now characterized by a unique occurrence in the Late Oligocene, and a subsequent 12 Myr lack in the fossil record. It is noteworthy that the tolypeutines remain decidedly marginal in the Late Palaeogene and Early Neogene deposits, whereas other cingulate groups diversify. Also, the anatomical phylogenetic analysis herein, which includes K. boliviensis , is congruent with recent molecular phylogenetic analyses. Kuntinaru boliviensis is the oldest confident calibration point available for the whole Cingulata.


2018 ◽  
Vol 93 (04) ◽  
pp. 504-512
Author(s):  
A. Yaghoubi ◽  
E. Pourjam ◽  
M. Pedram

AbstractAnguillonema iranicum n. sp. is described and illustrated as the second species of this genus from Iran, based on morphological, morphometric and molecular characteristics. It is identified by a short, thin body, a continuous lip region, six lines on the lateral field, a short, thin stylet, a posteriorly located pharyngo-intestinal junction to excretory pore, the presence of a post-vulval uterine sac, vulval position at 89% (87.4–89.9%) of body length, an elongate conoid tail with a rounded to pointed tip and not dorsally bent, and common functional males with short spicules and lacking a bursa. Morphological differences between the new species and the three known species of the genus, namely A. amolensis, A. crenati and A. poligraphi, are discussed. Molecular phylogenetic studies of the new species using partial 18S rDNA sequence revealed that it formed a sister clade with three species of Howardula, one species of Anguillonema and one unidentified isolate. In phylogenetic analyses using partial sequences of 28S rDNA D2-D3 segment, the new species formed a clade with two isolates of Parasitylenchus. A key to identification of Anguillonema species is also presented.


Zootaxa ◽  
2009 ◽  
Vol 2174 (1) ◽  
pp. 51-62 ◽  
Author(s):  
P. A. DINGHI ◽  
V. CONFALONIERI ◽  
M. M. CIGLIANO

The Dichroplini genera Scotussa, Leiotettix, Ronderosia, Atrachelacris, Chlorus, Eurotettix and Dichromatos have been grouped into the “Paranaense-Pampeano” informal genus group, based on characters of the male genitalia. However, recent molecular phylogenetic analyses showed weak support values or no support at all for this group. In this study, we used molecular and morphological characters to test the monophyly of this informal genus group. Morphological characters included aspects of the general morphology, and male and female genitalia as well. Whereas the molecular data was based on one mitochondrial gene: cytochrome oxidase I. Independent and combined phylogenetic analyses of the data were performed under both unweighted and implied weighting parsimony. Our results showed that, when only molecular data is considered, the “Paranaense-Pampeano” informal genus group is not recovered. However, the group is monophyletic according to morphological and combined analyses. The “Paranaense-Pampeano” informal genus group is considered to be a natural clade; therefore, we propose the genus group name Scotussae. As a final remark, the molecular data provided in most cases the same evidence of relationships as morphology.


Phytotaxa ◽  
2017 ◽  
Vol 324 (1) ◽  
pp. 51 ◽  
Author(s):  
JOHN M. HUISMAN ◽  
BYEONGSEOK KIM ◽  
MYUNG SOOK KIM

Considerable uncertainty surrounds the phylogenetic position of Polysiphonia scopulorum, a species with an apparently cosmopolitan distribution. Here we report, for the first time, molecular phylogenetic analyses using plastid rbcL gene sequences and morphological observations of P. scopulorum collected from the type locality, Rottnest Island in Western Australia. Morphological characteristics of the Rottnest Island specimens allowed unequivocal identification, however, the sequence analyses uncovered discrepancies in previous molecular studies that included specimens identified as P. scopulorum from other locations. The phylogenetic evidence clearly revealed that P. scopulorum from Rottnest Island formed a sister clade with P. caespitosa from Spain (JX828149 as P. scopulorum) with moderate support, but that it differed from specimens identified as P. scopulorum from the U.S.A. (AY396039, EU492915). In light of this, we suggest that P. scopulorum be considered an endemic species with a distribution restricted to Australia. Our results showed the existence of several distinct clades among the species of Polysiphonia sensu lato, including the clade containing P. scopulorum which did not join with the generitype Polysiphonia stricta (i.e., Polysiphonia sensu stricto). This suggests that the P. scopulorum clade might represent a separate genus, however, further studies including multi-gene analyses are recommended before recognizing any segregate taxa.


PhytoKeys ◽  
2020 ◽  
Vol 148 ◽  
pp. 71-91 ◽  
Author(s):  
Bine Xue ◽  
Hong-Bo Ding ◽  
Gang Yao ◽  
Yun-Yun Shao ◽  
Xiao-Jing Fan ◽  
...  

The genus Polyalthiopsis Chaowasku (Annonaceae) was a poorly known monotypic genus from Vietnam that was recently segregated from the highly polyphyletic genus Polyalthia s.l. The sister clade relationship between Polyalthiopsis and Miliusa was not well established in previous study. The phylogenetic position of two Polyalthia spp. from China, P. chinensis S.K.Wu ex P.T.Li and P. verrucipes C.Y.Wu ex P.T.Li, remains unresolved and is shown here to be phylogenetically affiliated with Polyalthiopsis. Phylogenetic analyses of six chloroplast regions (matK, ndhF, psbA-trnH, rbcL, trnL-F and ycf1; ca.7.3 kb, 60 accessions) unambiguously placed Polyalthia chinensis and P. verrucipes in the same clade with Polyalthiopsis floribunda (PP = 1, MPBS = 97%); the entire clade is sister to Miliusa with weak to strong support (PP = 1, MPBS = 54%). Polyalthia chinensis and P. verrucipes share several diagnostic characters with Polyalthiopsis floribunda, including the raised midrib on the upper surface of the leaf in vivo, conspicuous foliar glands when dried, petiole with transverse striations when dried and axillary inflorescences. The two species differ from Polyalthiopsis floribunda in having fewer flowers per inflorescence, longer linear petals and two ovules per carpel. On the basis of the combined molecular phylogenetic and morphological data, we propose two new combinations, Polyalthiopsis chinensis (S.K.Wu ex P.T.Li) B.Xue & Y.H.Tan and Polyalthiopsis verrucipes (C.Y.Wu ex P.T.Li) B.Xue & Y.H.Tan. The protologue of Polyalthia verrucipes did not include a description of the flowers, which we provide here. An updated description for the genus Polyalthiopsis and a key to species in the genus Polyalthiopsis is also provided.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


2021 ◽  
Vol 151 ◽  
Author(s):  
Dieter Weber ◽  
Fabio Stoch ◽  
Lee R.F.D. Knight ◽  
Claire Chauveau ◽  
Jean-François Flot

Microniphargus leruthi Schellenberg, 1934 (Amphipoda: Niphargidae) was first described based on samples collected in Belgium and placed in a monotypic genus within the family Niphargidae. However, some details of its morphology as well as recent phylogenetic studies suggest that Microniphargus may be more closely related to Pseudoniphargus (Amphipoda: Pseudoniphargidae) than to Niphargus. Moreover, M. leruthi ranges over 1,469 km from Ireland to Germany, which is striking since only a few niphargids have confirmed ranges in excess of 200 km. To find out the phylogenetic position of M. leruthi and check whether it may be a complex of cryptic species, we collected material from Ireland, England and Belgium then sequenced fragments of the mitochondrial cytochrome c oxidase subunit 1 gene as well as of the nuclear 28S ribosomal gene. Phylogenetic analyses of both markers confirm that Microniphargus is closer to Pseudoniphargus than to Niphargus, leading us to reallocate Microniphargus to Pseudoniphargidae. We also identify three congruent mito-nuclear lineages present respectively in Ireland, in both Belgium and England, and in England only (with the latter found in sympatry at one location), suggesting that M. leruthi is a complex of at least three species with a putative centre of origin in England.


2021 ◽  
Vol 106 ◽  
pp. 325-339
Author(s):  
Shirley A. Graham ◽  
Peter W. Inglis ◽  
Taciana B. Cavalcanti

Crenea Aubl. (Lythraceae) is a ditypic genus of subshrubs occurring in mangrove vegetation on the coasts of northern South America. Phylogenetic analyses based on morphology have offered unresolved and conflicting phylogenetic positions for the genus in the family. This study presents the first molecular sequences for Crenea, from nrITS, rbcL, trnL, trnL-F, and matK regions. Molecular phylogenetic analyses find full support for Crenea within Ammannia L., a relationship not previously recognized. Ammannia is a globally distributed genus of terrestrial to amphibious herbs mostly occurring in freshwater marshes and wetlands. It was recently reconfigured based on phylogenetic evidence to include the genera Nesaea Comm. ex Kunth and Hionanthera A. Fern. & Diniz. The transfer of Crenea to Ammannia further extends the morphological, ecological, and biogeographical diversity of Ammannia and provides the final evidence defining Ammannia as a monophyletic lineage of the Lythraceae. A revised circumscription of Ammannia s.l. adds several new morphological character states and the first species in the genus restricted to mangrove vegetation. Two changes in taxonomic status are made: Ammannia maritima (Aubl.) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov., and Ammannia patentinervius (Koehne) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov. The new combinations are described, a list of exsiccatae examined is provided, and the effects of the reconfiguration to the morphology and biogeography of the genus are detailed.


2021 ◽  
pp. 1-13
Author(s):  
Ishan Agarwal ◽  
Rachunliu G. Kamei ◽  
Stephen Mahony

Abstract Northeast Indian biodiversity has long been considered to have a stronger affinity to Southeast Asian rather than Peninsular Indian fauna, however, few molecular phylogenetic studies have explored this hypothesis. In Asia, the polyphyletic gekkonid genus Cnemaspis sensu lato is comprised of two distantly related groups; one primarily from South Asia with some members in Southeast Asia, and the other exclusively from Southeast Asia. Cnemaspis assamensis is a systematically obscure and geographically isolated species (>1400 km from its nearest congeners) from the Brahmaputra River Valley in Northeast India. We provide the first molecular phylogenetic assessment of this species based on a partial ND2 gene fragment. Cnemaspis assamensis is determined to be a deeply divergent (Oligocene) member of the South Asian radiation and is sister to the podihuna clade which is endemic to Sri Lanka. The biogeographic implications of this find are discussed and this is suspected to represent a rare example of true disjunction between the wet zones of Northeast India and southern India/Sri Lanka. These results further emphasise the importance of Northeast India as a refuge for unique ancient faunal lineages.


2019 ◽  
Vol 24 (7) ◽  
pp. 1284-1309 ◽  
Author(s):  
Philipp Chetverikov ◽  
C. CRAEMER C. CRAEMER ◽  
T. CVRKOVIĆ T. CVRKOVIĆ ◽  
P.G. EFIMOV P.G. EFIMOV ◽  
P.B. KLIMOV P.B. KLIMOV ◽  
...  

A new vagrant eriophyoid mite species of the archaic genus Pentasetacus (Schliesske 1985), P. novozelandicus n. sp., is described with the aid of conventional microscopy, confocal laser scanning microscopy and scanning electron microscopy. It was found on Araucaria heterophylla, which is an araucarian that is endemic to Norfolk Island and introduced to New Zealand. Partial sequences of mitochondrial barcode COI gene and D1–D2 domains of nuclear rDNA of two pentasetacid mites, P. araucariae (MK903025 and MK898944) and P. novozelandicus n. sp. (MK903024 and MK898943) are provided. Molecular phylogenetic analyses of full-length D1–D2 eriophyoid sequences, including GenBank sequences and newly generated sequences of pentasetacids, confirmed the monophyly of Pentasetacidae but failed to resolve the basal phylogeny of Eriophyoidea. This may be because the D1–D2 domains of 28S are hypervariable in Eriophyoidea. Moreover, in pentasetacids D1–D2 sequences are about 20% shorter than in other eriophyoids, and thus harder to align. Two types of anal lobes are described in Eriophyoidea: (1) Eriophyidae s.l. and Phytoptidae s.l. have bilaterally symmetric lobes; (2) pentasetacids have non-divided lobes. The presence of an anal secretory apparatus, comprising internal structures that have previously been described in Eriophyidae s.l. and Phytoptidae s.l., is confirmed in pentasetacid genera. The phylogeny of pentasetacids is also discussed in the context of the paleobiography of Araucariaceae.


Sign in / Sign up

Export Citation Format

Share Document