scholarly journals MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation

Brain ◽  
2018 ◽  
Vol 142 (1) ◽  
pp. 176-192 ◽  
Author(s):  
Bing-Lin Zhu ◽  
Yan Long ◽  
Wei Luo ◽  
Zhen Yan ◽  
Yu-Jie Lai ◽  
...  

AbstractMMP13 (matrix metallopeptidase 13) plays a key role in bone metabolism and cancer development, but has no known functions in Alzheimer’s disease. In this study, we used high-throughput small molecule screening in SH-SY5Y cells that stably expressed a luciferase reporter gene driven by the BACE1 (β-site amyloid precursor protein cleaving enzyme 1) promoter, which included a portion of the 5′ untranslated region (5′UTR). We identified that CL82198, a selective inhibitor of MMP13, decreased BACE1 protein levels in cultured neuronal cells. This effect was dependent on PI3K (phosphatidylinositide 3-kinase) signalling, and was unrelated to BACE1 gene transcription and protein degradation. Further, we found that eukaryotic translation initiation factor 4B (eIF4B) played a key role, as the mutation of eIF4B at serine 422 (S422R) or deletion of the BACE1 5′UTR attenuated MMP13-mediated BACE1 regulation. In APPswe/PS1E9 mice, an animal model of Alzheimer’s disease, hippocampal Mmp13 knockdown or intraperitoneal CL82198 administration reduced BACE1 protein levels and the related amyloid-β precursor protein processing, amyloid-β load and eIF4B phosphorylation, whereas spatial and associative learning and memory performances were improved. Collectively, MMP13 inhibition/CL82198 treatment exhibited therapeutic potential for Alzheimer’s disease, via the translational regulation of BACE1.

2016 ◽  
Vol 37 (3) ◽  
pp. 1120-1136 ◽  
Author(s):  
AmanPreet Badhwar ◽  
Rebecca Brown ◽  
Danica B Stanimirovic ◽  
Arsalan S Haqqani ◽  
Edith Hamel

Cerebrovascular insufficiency appears years prior to clinical symptoms in Alzheimer’s disease. The soluble, highly toxic amyloid-β species, generated from the amyloidogenic processing of amyloid precursor protein, are known instigators of the chronic cerebrovascular insufficiency observed in both Alzheimer’s disease patients and transgenic mouse models. We have previously demonstrated that pioglitazone potently reverses cerebrovascular impairments in a mouse model of Alzheimer’s disease overexpressing amyloid-β. In this study, we sought to characterize the effects of amyloid-β overproduction on the cerebrovascular proteome; determine how pioglitazone treatment affected the altered proteome; and analyze the relationship between normalized protein levels and recovery of cerebrovascular function. Three-month-old wildtype and amyloid precursor protein mice were treated with pioglitazone- (20 mg/kg/day, 14 weeks) or control-diet. Cerebral arteries were surgically isolated, and extracted proteins analyzed by gel-free and gel-based mass spectrometry. 193 cerebrovascular proteins were abnormally expressed in amyloid precursor protein mice. Pioglitazone treatment rescued a third of these proteins, mainly those associated with oxidative stress, promotion of cerebrovascular vasocontractile tone, and vascular compliance. Our results demonstrate that amyloid-β overproduction perturbs the cerebrovascular proteome. Recovery of cerebrovascular function with pioglitazone is associated with normalized levels of key proteins in brain vessel function, suggesting that pioglitazone-responsive cerebrovascular proteins could be early biomarkers of Alzheimer’s disease.


2021 ◽  
pp. 1-13
Author(s):  
C. Aaron Smith ◽  
Haddon Smith ◽  
Lisa Roberts ◽  
Lori Coward ◽  
Gregory Gorman ◽  
...  

Background: While extensive research on the brain has failed to identify effective therapies, using probiotics to target the gut microbiome has shown therapeutic potential in Alzheimer’s disease (AD). Genetically modified probiotics (GMP) are a promising strategy to deliver key therapeutic peptides with high efficacy and tissue specificity. Angiotensin (Ang)-(1-7) levels inversely correlate to AD severity, but its administration is challenging. Our group has successfully established a GMP-based method of Ang-(1-7) delivery. Objective: Since Drosophila represents an excellent model to study the effect of probiotics on complex disorders in a high throughput manner, we tested whether oral supplementation with Lactobacillus paracasei releasing Ang-(1-7) (LP-A) delays memory loss in a Drosophila AD model. Methods: Flies overexpressing the human amyloid-β protein precursor and its β-site cleaving enzyme in neurons were randomized to receive four 24-h doses of Lactobacillus paracasei alone (LP), LP-A or sucrose over 14 days. Memory was assessed via an aversive phototaxic suppression assay. Results: Optimal dilution,1:2, was determined based on palatability. LP-A improved memory in trained AD males but worsened cognition in AD females. LP-supplementation experiments confirmed that Ang-(1-7) conferred additional cognitive benefits in males and was responsible for the deleterious cognitive effects in females. Sex-specific differences in the levels of angiotensin peptides and differential activation of the kynurenine pathway of tryptophan metabolism in response to supplementation may underlie this male-only therapeutic response. Conclusion: In summary, LP-A ameliorated the memory deficits of a Drosophila AD model, but effects were sex-specific. Dosage optimization may be required to address this differential response.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3589
Author(s):  
Wanda M. Snow ◽  
Chris Cadonic ◽  
Claudia Cortes-Perez ◽  
Aida Adlimoghaddam ◽  
Subir K. Roy Chowdhury ◽  
...  

The creatine (Cr) energy system has been implicated in Alzheimer’s disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8–9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid β (Aβ) species, whereas Aβ trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatsuya Ikenoue ◽  
Francesco A. Aprile ◽  
Pietro Sormanni ◽  
Francesco S. Ruggeri ◽  
Michele Perni ◽  
...  

Abstract Bicyclic peptides have great therapeutic potential since they can bridge the gap between small molecules and antibodies by combining a low molecular weight of about 2 kDa with an antibody-like binding specificity. Here we apply a recently developed in silico rational design strategy to produce a bicyclic peptide to target the C-terminal region (residues 31–42) of the 42-residue form of the amyloid β peptide (Aβ42), a protein fragment whose aggregation into amyloid plaques is linked with Alzheimer’s disease. We show that this bicyclic peptide is able to remodel the aggregation process of Aβ42 in vitro and to reduce its associated toxicity in vivo in a C. elegans worm model expressing Aβ42. These results provide an initial example of a computational approach to design bicyclic peptides to target specific epitopes on disordered proteins.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giuseppe Uras ◽  
Alessia Manca ◽  
Pengfei Zhang ◽  
Zsuzsa Markus ◽  
Natalie Mack ◽  
...  

Alzheimer’s disease is a neurodegenerative disease characterized by disrupted memory, learning functions, reduced life expectancy, and locomotor dysfunction, as a result of the accumulation and aggregation of amyloid peptides that cause neuronal damage in neuronal circuits. In the current study, we exploited a transgenic Drosophila melanogaster line, expressing amyloid-β peptides to investigate the efficacy of a newly synthesized acetylcholinesterase inhibitor, named XJP-1, as a potential AD therapy. Behavioral assays and confocal microscopy were used to characterize the drug effect on AD symptomatology and amyloid peptide deposition. The symptomatology induced in this particular transgenic model recapitulates the scenario observed in human AD patients, showing a shortened lifespan and reduced locomotor functions, along with a significant accumulation of amyloid plaques in the brain. XJP-1 treatment resulted in a significant improvement of AD symptoms and a reduction of amyloid plaques by diminishing the amyloid aggregation rate. In comparison with clinically effective AD drugs, our results demonstrated that XJP-1 has similar effects on AD symptomatology, but at 10 times lower drug concentration than donepezil. It also showed an earlier beneficial effect on the reduction of amyloid plaques at 10 days after drug treatment, as observed for donepezil at 20 days, while the other drugs tested have no such effect. As a novel and potent AChE inhibitor, our study demonstrates that inhibition of the enzyme AChE by XJP-1 treatment improves the amyloid-induced symptomatology in Drosophila, by reducing the number of amyloid plaques within the fruit fly CNS. Thus, compound XJP-1 has the therapeutic potential to be further investigated for the treatment of AD.


Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 58
Author(s):  
Enes Akyuz ◽  
Chiara Villa ◽  
Merve Beker ◽  
Birsen Elibol

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a complex etiology and characterized by cognitive deficits and memory loss. The pathogenesis of AD is not yet completely elucidated, and no curative treatment is currently available. Inwardly rectifying potassium (Kir) channels are important for playing a key role in maintaining the resting membrane potential and controlling cell excitability, being largely expressed in both excitable and non-excitable tissues, including neurons. Accordingly, the aim of the study is to investigate the role of neuronal Kir channels in AD pathophysiology. The mRNA and protein levels of neuronal Kir2.1, Kir3.1, and Kir6.2 were evaluated by real-time PCR and Western blot analysis from the hippocampus of an amyloid-β(Aβ)(1-42)-infused rat model of AD. Extracellular deposition of Aβ was confirmed by both histological Congo red staining and immunofluorescence analysis. Significant decreased mRNA and protein levels of Kir2.1 and Kir6.2 channels were observed in the rat model of AD, whereas no differences were found in Kir3.1 channel levels as compared with controls. Our results provide in vivo evidence that Aβ can modulate the expression of these channels, which may represent novel potential therapeutic targets in the treatment of AD.


2007 ◽  
Vol 18 (9) ◽  
pp. 3591-3600 ◽  
Author(s):  
Yvonne S. Eisele ◽  
Matthias Baumann ◽  
Bert Klebl ◽  
Christina Nordhammer ◽  
Mathias Jucker ◽  
...  

Amyloid-β (Aβ) deposition is a major pathological hallmark of Alzheimer's disease. Gleevec, a known tyrosine kinase inhibitor, has been shown to lower Aβ secretion, and it is considered a potential basis for novel therapies for Alzheimer's disease. Here, we show that Gleevec decreases Aβ levels without the inhibition of Notch cleavage by a mechanism distinct from γ-secretase inhibition. Gleevec does not influence γ-secretase activity in vitro; however, treatment of cell lines leads to a dose-dependent increase in the amyloid precursor protein intracellular domain (AICD), whereas secreted Aβ is decreased. This effect is observed even in presence of a potent γ-secretase inhibitor, suggesting that Gleevec does not activate AICD generation but instead may slow down AICD turnover. Concomitant with the increase in AICD, Gleevec leads to elevated mRNA and protein levels of the Aβ-degrading enzyme neprilysin, a potential target gene of AICD-regulated transcription. Thus, the Gleevec mediated-increase in neprilysin expression may involve enhanced AICD signaling. The finding that Gleevec elevates neprilysin levels suggests that its Aβ-lowering effect may be caused by increased Aβ-degradation.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Katharina Paesler ◽  
Kan Xie ◽  
Moritz M. Hettich ◽  
Magdalena E. Siwek ◽  
Devon P. Ryan ◽  
...  

Alzheimer’s disease (AD) has been associated with increased phosphorylation of the translation initiation factor 2α(eIF2α) at serine 51. Increased phosphorylation of eIF2αalters translational control and may thereby have adverse effects on synaptic plasticity, learning, and memory. To analyze if increased levels of p-eIF2αindeed promote AD-related neurocognitive impairments, we crossed 5xFAD transgenic mice with aneIF2αS51Aknock-in line that expresses the nonphosphorylatable eIF2αvarianteIF2αS51A. Behavioral assessment of the resulting mice revealed motor and cognitive deficits in 5xFAD mice that were, with the possible exception of locomotor hyperactivity, not restored by theeIF2αS51Aallele. Telemetric intracranial EEG recordings revealed no measurable effects of theeIF2αS51Aallele on 5xFAD-associated epileptic activity. Microarray-based transcriptome analyses showed clear transcriptional alterations in 5xFAD hippocampus that were not corrected by theeIF2αS51Aallele. In contrast to prior studies, our immunoblot analyses did not reveal increased levels of p-eIF2αin the hippocampus of 5xFAD mice, suggesting that elevated p-eIF2αlevels are not a universal feature of AD models. Collectively, our data indicate that 5xFAD-related pathologies do not necessarily require hyperphosphorylation of eIF2αto emerge; they also show that heterozygosity for the nonphosphorylatableeIF2αS51Aallele has limited effects on 5xFAD-related disease manifestations.


Sign in / Sign up

Export Citation Format

Share Document