Changes in response to, and production of, transforming growth factor type β during neoplastic progression in cultured rat tracheal epithelial cells

1989 ◽  
Vol 10 (6) ◽  
pp. 973-980 ◽  
Author(s):  
M. Terzaghi-Howe
1989 ◽  
Vol 2 (6) ◽  
pp. 336-344 ◽  
Author(s):  
Patrice C. Ferriola ◽  
Cheryl Walker ◽  
Alice T. Robertson ◽  
H. Shelton Earp ◽  
David W. Rusnak ◽  
...  

1987 ◽  
Vol 7 (11) ◽  
pp. 4017-4023 ◽  
Author(s):  
H L Smits ◽  
E E Floyd ◽  
A M Jetten

A cDNA library was constructed from polyadenylated RNA present in squamous differentiated rabbit tracheal epithelial cells. Screening of the cDNA library was aimed at identifying RNAs that were abundant in squamous cells and expressed at low levels in undifferentiated cells. Two different recombinants were obtained containing inserts, 0.86 and 0.77 kilobases (kb) in size, that hybridized to mRNAs 1.0 and 1.25 kb in length. These RNAs were present at approximately 50-fold higher levels in squamous cells than in proliferative or confluent retinoic acid-treated cells. The increase in the levels of the 1.0- and 1.25-kb RNAs correlated closely with the onset of squamous differentiation and was not related to induction of terminal cell division. Treatment of rabbit tracheal epithelial cells with transforming growth factor beta, which induces squamous differentiation in these cells, also resulted in elevated levels of the 1.0- and 1.25-kb RNAs. The increased levels of these RNAs in squamous cells appeared to a large extent to be regulated at a posttranscriptional level. Retinoic acid not only inhibited the increase in the levels of the 1.0- and 1.25-kb RNAs but also reversed the expression of these RNAs in squamous cells. These results suggest that retinoic acid affects, directly or indirectly, molecular events that induce alterations in the posttranscriptional processing of the transcripts corresponding to the 1.0- and 1.25-kb RNAs.


1994 ◽  
Vol 267 (6) ◽  
pp. L693-L703 ◽  
Author(s):  
S. Idell ◽  
A. Kumar ◽  
C. Zwieb ◽  
D. Holiday ◽  
K. B. Koenig ◽  
...  

The epithelial lining of the airways is subject to injury through several processes, including infections, bronchiolitis, and fume exposures. Because airway fibrin deposition influences the course of local injury, we examined how two inflammatory cytokines influenced fibrin formation and clearance in human tracheal epithelial cells (TEC). TEC were treated with transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha). TNF-alpha increased release of tissue factor (TF)-related procoagulant activity that, through generation of factor Xa, promotes assembly of the prothrombinase complex at the cell surface. Fibrinolytic activity was plasminogen dependent and due to both urokinase (uPA) and tissue plasminogen activator (tPA). The cells expressed plasminogen activator inhibitor 1 (PAI-1), but relatively little PAI-2. Depression of fibrinolysis by TGF-beta correlated with increased PAI-1. Conversely, TNF-alpha increased plasminogen activator (PA) activity due to increased uPA. Fibrinolytic activity was inhibited by actinomycin D and cyclohexamide, but changes in mRNAs for uPA, tPA, PAI-1, and TF by either cytokine were not appreciable. PAI-2 mRNA was not found. The data indicate that TGF-beta decreases the fibrinolytic capacity of TEC, suggesting that this cytokine promotes fibrin retention. TNF-alpha increases expression of both procoagulant and fibrinolytic activities; this differential regulation could favor both pericellular fibrin formation and dissolution.


Sign in / Sign up

Export Citation Format

Share Document