scholarly journals Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity

2003 ◽  
Vol 25 (2) ◽  
pp. 203-209 ◽  
Author(s):  
M. Miyata
2004 ◽  
Vol 101 (3) ◽  
pp. 729-737 ◽  
Author(s):  
Evan D. Kharasch ◽  
Dale Whittington ◽  
Christine Hoffer

Background Oral transmucosal fentanyl citrate (OTF) was developed to provide rapid analgesia and is specifically approved for treating breakthrough cancer pain. Fentanyl in OTF is absorbed across the oral mucosa, but a considerable portion is swallowed and absorbed enterally. Fentanyl metabolism is catalyzed by cytochrome P4503A4 (CYP3A). The role of intestinal or hepatic first-pass metabolism and CYP3A activity in OTF disposition is unknown. This investigation examined the influence of hepatic and intestinal CYP3A activity on the disposition and clinical effects of OTF. Methods Healthy volunteers (n = 12) were studied in an Institutional Review Board-approved, randomized, balanced, four-way crossover. They received OTF (10 microg/kg) after hepatic/intestinal CYP3A induction by rifampin, hepatic/intestinal CYP3A inhibition by troleandomycin, selective intestinal CYP3A inhibition by grapefruit juice, or nothing (control). Plasma fentanyl and norfentanyl concentrations were determined by mass spectrometry. Fentanyl effects were measured by dark-adapted pupil diameter and subjective self-assessments using visual analog scales. Results : Peak plasma fentanyl concentrations, time to peak, and maximum pupil diameter change from baseline were unchanged after rifampin, troleandomycin, and grapefruit juice. Fentanyl elimination, however, was significantly affected by CYP3A alterations. After control, rifampin, troleandomycin and grapefruit juice, respectively, area under the curve of plasma fentanyl versus time was 5.9 +/- 3.7, 2.2 +/- 0.8,* 10.4 +/- 8.9,* and 5.8 +/- 3.3 h x ng/ml; norfentanyl/fentanyl plasma area under the curve ratios were 0.92 +/- 0.63, 3.2 +/- 1.8,* 0.08 +/- 0.14,* and 0.67 +/- 0.33 (*P < 0.05 versus control). Discussion Peak fentanyl concentrations and clinical effects after OTF were minimally affected by altering both intestinal and hepatic CYP3A activity, whereas fentanyl metabolism, elimination, and duration of effects were significantly affected; selective intestinal CYP3A inhibition had minimal effects. This suggests that first-pass metabolism minimally influences OTF bioavailability. When treating breakthrough pain, with careful attention to maximal mucosal absorption and minimal swallowing, CYP3A variability and drug interactions are unlikely to affect the onset or magnitude of OTF analgesia; however, duration may be affected.


2018 ◽  
Vol 26 ◽  
pp. 42-48 ◽  
Author(s):  
Grace A. Odongo ◽  
Nina Schlotz ◽  
Susanne Baldermann ◽  
Susanne Neugart ◽  
Benard Ngwene ◽  
...  

Author(s):  
Franziska Ferk ◽  
Karl Speer ◽  
Miroslav Mišík ◽  
Armen Nersesyan ◽  
Siegfried Knasmüller

2020 ◽  
Vol 10 (11) ◽  
pp. 3929-3947
Author(s):  
Nick St. John ◽  
Julian Freedland ◽  
Henri Baldino ◽  
Francis Doyle ◽  
Cinzia Cera ◽  
...  

Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2(SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.


Toxins ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Wei-Hong Feng ◽  
Kathy Xue ◽  
Lili Tang ◽  
Phillip Williams ◽  
Jia-Sheng Wang

2015 ◽  
Vol 83 ◽  
pp. 54-60 ◽  
Author(s):  
J. Zhang ◽  
N. Zheng ◽  
J. Liu ◽  
F.D. Li ◽  
S.L. Li ◽  
...  
Keyword(s):  

2015 ◽  
Vol 29 (3) ◽  
pp. 538-543 ◽  
Author(s):  
C.E.P. Zimmermann ◽  
I.B.M. Cruz ◽  
F.C. Cadoná ◽  
A.K. Machado ◽  
C. Assmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document