scholarly journals Correction of Low Neonatal Vitamin D Status Using 1000 IU/d of Vitamin D Improved Body Composition (Lean Mass and Fat Mass) Compared to Using the Standard of Care by 6 Months of Age (P11-094-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Maryam Razaghi ◽  
Catherine Vanstone ◽  
Olusola Sotunde ◽  
Nathalie Gharibeh ◽  
Sarah Kimmins ◽  
...  

Abstract Objectives Vitamin D status is positively associated with lean mass phenotype in healthy infants born with sufficient vitamin D stores. The objective is to test whether rapid correction of low neonatal vitamin D status improves body composition (lean mass and fat mass) at 6 mo of age. Methods In a double-blinded randomized parallel group controlled trial (NCT02563015), healthy term neonates of appropriate weight for gestational age were recruited from Montreal. Capillary blood samples were collected 24–36 h post natally for measurement of serum 25-hydroxyvitamin D [25(OH)D] (Liaison, Diasorin Inc.). Infants with serum 25(OH)D < 50 nmol/L (n = 87) were randomized to receive 400 or 1000 IU/d until 6 mo of age. Those with 25(OH)D ≥ 50 nmol/L (n = 31) were recruited as a reference group, and received 400 IU/d. Anthropometry, lean mass and fat mass (dual-energy x-ray absorptiometry) were measured at baseline, 3 and 6 mo. Skin color was measured using a spectrophotometer. Differences between treatments and reference groups were tested using mixed model and repeated measures ANOVA accounting for the effects of sex, season of birth, skin color and gestational age (GA). Results Neonates (67 males, 51 females) were 39.6 ± 1wk GA and 3387 ± 371 g at birth. There were no differences between groups in lean mass or fat mass at baseline; nor in weight or length at any time-point. Combined treatment groups, had lower serum 25(OH)D concentrations at birth compared to the reference group (33 ± 11 vs. 69 ± 13 nmol/L, P < 0.0001). However, at 6 mo of age, serum 25(OH)D concentration was higher in the group receiving 1000 IU/d (n = 34), in comparison to the group receiving 400 IU/d (n = 29), and the reference (n = 19) group (125.0 ± 34.0, 82.2 ± 21.5 vs. reference 85.4 ± 32.1 nmol/L, P < 0.0001). Whole body lean mass was significantly different among groups (5071.3 ± 750.0, 4944.1 ± 616.3 and 5166.0 ± 645.4 g, respectively, P = 0.03), with infants in the treatment group provided a 400 IU/d supplement having a lower lean mass by 6 mo of age compared to the 1000 IU/d group. Fat mass was not different among groups following post-hoc testing (2967.0 ± 929.0 and 2962.0 ± 952.0, 2742.0 ± 754.0 g, P = 0.16). Conclusions Higher dosage supplementation of vitamin D rapidly improved vitamin D status and supported a leaner body phenotype in infancy. Funding Sources Canadian Institutes of Health Research.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Maria Nikolova ◽  
Alexander Penkov

AbstractIntroduction:Obesity has been linked with vitamin D deficiency in a number of cross-sectional studies, reviews and meta-analyses. To assess the correlations of plasma 25(OH) vitamin D levels with indices of body composition examined by DXA with an emphasis on lean and bone mass as well as on indices such as android/gynoid fat, appendicular lean mass (ALM) and appendicular lean mass index (ALMI), fat-mass indexes (FMI), fat-free mass indexes (FFMI) and the ALM-to-BMI index.Materials and Methods:62 adult subjects consented to participate – 27 men (43.5 %) and 35 women (56.5 %). Their mean age was 45.3 ± 9.5 years. Fan-beam dual-energy X-ray (DXA) body composition analysis was performed on a Lunar Prodigy Pro bone densitometer with software version 12.30. Vitamin D was measured by electro-hemi-luminescent detection as 25(OH)D Total (ECLIA, Elecsys 2010 analyzer, Roche Diagnostics). Statistical analyses were done using the SPSS 23.0 statistical package.Results:The serum 25(OH)D level was correlated significantly only to the whole body bone mineral content, the appendicular lean mass index (ALMI) and the ALM-to-BMI index, underlining a predominant role for lean and fat-free mass. Vitamin D showed a very weak correlation to % Body Fat and the Fat Mass Index (FMI) in men only. Moreover, the multiple regression equation including the associated parameters could explain only 7 % of the variation in the serum 25(OH)D levels.Discussion:Our conclusion was, that there are differences in the associations of the vitamin D levels with the different body composition indices, but these associations are generally very weak and therefore – negligible.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 804-804
Author(s):  
Maryam Razaghi ◽  
Catherine A Vanstone ◽  
Nathalie Gharibeh ◽  
Olusola F Sotunde ◽  
Shuqin Wei ◽  
...  

Abstract Objectives The primary objective was to test whether rapid correction of insufficient vitamin D status initiated in the neonatal period improves whole-body lean mass across infancy. Methods This was a double-blinded, parallel-group, randomized controlled trial (NCT02563015). Healthy term breastfed infants of appropriate weight for gestational age (AGA) were recruited from Montreal (March 2016–2019). Capillary blood was collected (24–36 h) for serum 25-hydroxyvitamin D [25(OH)D] measurement (Liaison, Diasorin Inc.). Infants with serum 25(OH)D &lt; 50 nmol/L were randomized to receive 400 (group 1, n = 49) or 1000 IU/d (group 2, n = 49) until 12 mo of age. Those with 25(OH)D ≥ 50 nmol/L were recruited to form a reference group, receiving 400 IU/d (group 3, n = 41). Anthropometry, body composition (dual-energy x-ray absorptiometry), and 25(OH)D concentrations were assessed at 1, 3, 6, and 12 mo. Differences between trial and reference groups were tested using mixed model repeated measures ANOVA adjusting for maternal pregnancy weight gain, infant sex, skin color, actual age at assessment, and breastfeeding status. Data are mean ± SD. Results Infants (81 males, 58 females) were 39.6 ± 1.0 wk GA and 3388 ± 372 g at birth. By design, infants in group 1 and 2 had lower serum 25(OH)D concentrations at birth compared to group 3 (31.1 ± 9.3, 34.4 ± 12.0 vs. 68.0 ± 13.2 nmol/L, respectively, P &lt; 0.0001). On average, both trial groups achieved and maintained vitamin D sufficiency (25(OH)D ≥ 50 nmol/L) from 3 to 12 mo. Lean mass was not different among groups at baseline, but at 12 mo was higher in group 2 compared to group 1 (7012.5 ± 904.6 vs. 6690.4 ± 1121.7 g, P = 0.0075; 4.8% difference), and not different from the reference group (7012.5 ± 904.6 vs. 6715.1 ± 784.6 g, P = 0.2882). Weight, length, and whole-body fat mass were not different among groups at any time-point. Conclusions Vitamin D supplementation (400 and 1000 IU/d) corrects insufficient stores, whereas the higher dosage of 1000 IU/d, modestly increases lean mass of otherwise healthy AGA term born infants by 12 mo of age without altering weight or length. These data concur with observations in weanling rats where increased vitamin D intakes elevated lean mass. The long-term benefits require further research. Funding Sources Funded by Canadian Institutes of Health Research.


2021 ◽  
Author(s):  
Maryam Razaghi ◽  
Nathalie Gharibeh ◽  
Catherine A. Vanstone ◽  
Olusola F. Sotunde ◽  
Shu Qin Wei ◽  
...  

Abstract Background: Vitamin D status of pregnant women is associated with body composition of the offspring. The objective of this study was to assess whether the association between maternal vitamin D status and neonatal adiposity is modified by maternal adiposity preconception.Methods: Healthy mothers and their term appropriate weight for gestational age (AGA) infants (n=142; 59% male, Greater Montreal, March 2016-2019) were studied at birth and 1 month postpartum (2-6 weeks). Newborn (24-36 hour) serum was collected to measure total 25-hydroxyvitamin D [25(OH)D] (immunoassay); maternal pre-pregnancy BMI was obtained from the medical record. Anthropometry, body composition (dual-energy X-ray absorptiometry) and serum 25(OH)D were measured at 2-6 weeks postpartum in mothers and infants. Mothers were grouped into 4 categories based on their vitamin D status (sufficient 25(OH)D ≥50 nmol/L vs. at risk of being insufficient <50 nmol/L) and pre-pregnancy BMI (<25 vs. ≥25 kg/m2): insufficient-recommended weight (I-RW, n=24); insufficient-overweight/obese (I-OW/O, n=21); sufficient-recommended weight (S-RW, n=69); and sufficient-overweight/obese (S-OW/O, n=28). Partial correlation and mixed model ANOVA were used while adjusting for covariates.Results: At birth, infant serum 25(OH)D mean concentrations were below the cut-point for sufficiency of 50 nmol/L for both maternal pre-pregnancy BMI categories; 47.8 [95%CI: 43.8, 51.9] nmol/L if BMI <25 kg/m2 and 38.1 [95%CI: 33.5, 42.7] nmol/L if BMI ≥25 kg/m2. Infant serum 25(OH)D concentrations at birth (r=0.77; p<0.0001) and 1 month (r=0.59, p<0.0001) were positively correlated with maternal postpartum serum 25(OH)D concentrations. Maternal serum 25(OH)D concentration was inversely associated with maternal percent whole body fat mass (r=-0.26, p=0.002). Infants of mothers in I-OW/O had higher fat mass versus those of mothers in S-OW/O (914.0 [95%CI: 766.4, 1061.6] vs. 780.7 [95%CI: 659.3, 902.0] g; effect size [Hedges' g: 0.42]; p=0.04) with magnitude of difference of 220.4 g or ~28% difference (adjusting for covariates). Conclusions: Maternal vitamin D status is positively correlated with neonatal vitamin D. In this study, maternal adiposity and serum 25(OH)D <50 nmol/L are dual exposures for neonatal adiposity. These findings reinforce the importance of vitamin D supplementation early in infancy irrespective of vitamin D stores acquired in utero and maternal weight status.


2020 ◽  
Vol 5 (2) ◽  
pp. 32
Author(s):  
Jennifer B. Fields ◽  
Sina Gallo ◽  
Jenna M. Worswick ◽  
Deanna R. Busteed ◽  
Margaret T. Jones

Women athletes are at higher risk for bone diseases; yet, information on vitamin D status ((25(OH)D), vitamin D binding protein (VDBP), and bioavailable 25(OH)D is limited. Collegiate athletes (n = 36) from volleyball (WVB), basketball (WBB), and track and field (WTF) were measured for (25(OH)D), VDBP, and bioavailable 25(OH)D; body composition and bone mineral density (BMD); and skin pigmentation. Participants self-reported daily vitamin D intake and sun exposure. One-way analysis of variance analyzed mean differences in measures across sports. Linear regression examined relationships between 25(OH)D; VDBP; bioavailable 25(OH)D; and whole body, hip, and spine BMD. Participants’ (mean ± SD, 19.4 ± 1.4 years, 172.75 ± 8.21 cm, 70.9 ± 13.2 kg, and 22.9 ± 4.1% body fat) overall mean 25(OH)D was 70.5 ± 32.25 nmol/L, and 28% of participants were deemed inadequate and 61% below thresholds identified as sufficient for athletes. Although WBB athletes consumed higher (p = 0.007) dietary vitamin D (760.9 ± 484.2 IU/d) than WVB (342.6 ± 257.8) and WTF (402.3 ± 376.4) athletes did, there were no differences across sport in serum 25(OH)D. WVB and WTF had higher bioavailable 25(OH)D than WBB. No relationships existed between vitamin D status and body composition. Vitamin D inadequacy was identified among 1/3 of women indoor sport athletes. Consistent monitoring of vitamin D status and diet are recommended to sustain athlete health and sport performance.


Author(s):  
Jorge Pérez-Gómez ◽  
José Carmelo Adsuar ◽  
Miguel Ángel García-Gordillo ◽  
Pilar Muñoz ◽  
Lidio Romo ◽  
...  

(1) Background: Regucalcin or senescence marker protein 30 (SMP30) is a Ca2+ binding protein discovered in 1978 with multiple functions reported in the literature. However, the impact of exercise training on SMP30 in humans has not been analyzed. Aging is associated with many detrimental physiological changes that affect body composition, functional capacity, and balance. The present study aims to investigate the effects of whole body vibration (WBV) in postmenopausal women. (2) Methods: A total of 13 women (aged 54.3 ± 3.4 years) participated in the study. SMP30, body composition (fat mass, lean mass, and bone mass) and physical fitness (balance, time up and go (TUG) and 6-min walk test (6MWT)) were measured before and after the 12 weeks of WBV training. (3) Results: The WBV training program elicited a significant increase in SPM30 measured in plasma (27.7%, p = 0.004) and also in 6MWT (12.5%, p < 0.001). The WBV training also significantly reduced SPM30 measured in platelets (38.7%, p = 0.014), TUG (23.1%, p < 0.001) and total body fat mass (4.4%, p = 0.02). (4) Conclusions: There were no significant differences in balance, lean mass or bone mass. The present study suggests that 12 weeks of WBV has the potential to improve SPM30, fat mass, TUG and 6MWT in postmenopausal women.


2018 ◽  
Vol 45 (2) ◽  
pp. 5-11
Author(s):  
M. G. Nikolova ◽  
A. B. Penkov ◽  
M. A. Boyanov

Abstract Obesity has been linked with vitamin D deficiency in a number of cross-sectional studies, reviews and meta-analyses. The aim of the present study was to assess the correlations of plasma 25(OH) vitamin D levels with indices of body composition examined by DXA with an emphasis on lean and bone mass as well as on indices such as android/gynoid fat, appendicular lean mass, fat-mass indexes (FMI) and fat-free mass indexes (FFMI). 62 adult subjects consented to participate – 27 men (43.5%) and 35 women (56.5%). Their mean age was 45.3 ± 9.5 years. Fan-beam dual-energy X-ray (DXA) body composition analysis was performed on a Lunar Prodigy Pro bone densitometer with software version 12.30. Vitamin D was measured by electro-hemi-luminescent detection as 25(OH) D Total (ECLIA, Elecsys 2010 analyzer, Roche Diagnostics). Statistical analyses were done using the SPSS 23.0 statistical package. The serum 25(OH)D level was correlated significantly only to the whole body bone mineral content, the appendicular lean mass index (ALMI) and the ALM-to-BMI index, underlining a predominant role for lean and fat-free mass. Vitamin D showed a very weak correlation to % Body Fat and the Fat Mass Index (FMI) in men only. Moreover, the multiple regression equation including the associated parameters could explain only 7% of the variation in the serum 25(OH) D levels. Our conclusion was, that there are differences in the associations of the vitamin D levels with the different body composition indices, but these associations are generally very weak and therefore – negligible.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Kyungchul Song ◽  
Han saem CHOI ◽  
Junghwan Suh ◽  
Ah Reum Kwon ◽  
Hyun-wook Chae ◽  
...  

Abstract Introduction Fractures are common in pediatric population, and lower bone density increases the risk of fracture. Most bone acquisition happens during youth, so juvenile bone mineral density (BMD) assessment is important. There are many factors associated with low BMD, including vitamin D status, calcium intake, low body weight, and physical activity. Among these, our investigation focused on the association of BMD with vitamin D in adolescents. Methods This study investigated data of 1,063 adolescents aged 12-18 years from the fifth and sixth Korea National Health and Nutritional Examination Survey (2009-2011). The association of various factors (vitamin D level, calcium intake, body mass index (BMI), lean mass, fat mass, and physical activity) with BMD Z-scores in whole body, lumbar spine, total femur, and femur neck were analyzed. We defined vitamin D deficiency (≤ 12 ng/mL), vitamin D insufficiency (12-20 ng/mL), and sufficiency (&gt; 20ng/mL) according to the 25-hydroxyvitamin D (25-OHD) level. We analyzed association between BMD and vitamin D levels after adjusting for other factors. Results The mean 25-OHD level of subjects was low (16.28 ng/ml). Of all subjects, 21.9% were vitamin D deficient, and 58.5% were vitamin D insufficient. Among the vitamin D groups, the vitamin D sufficient group had significantly higher BMD Z-scores than the vitamin D deficient group in whole body, lumbar spine, and femur neck. The sufficient vitamin D group had higher BMD Z-score than the vitamin D insufficient group in femur neck, and the vitamin D insufficient group had higher BMD Z-score than the vitamin D deficient group in whole body. Among various factors, vitamin D status, calcium intake, BMI, lean mass, fat mass, and physical activity were positively associated with BMD Z-scores. In particular, lean mass was the strongest independent factor. Vitamin D levels were positively associated with the BMD Z-scores even after adjusting for other factors. Conclusions Vitamin D deficiency and insufficiency were common among adolescents. This study suggested that vitamin D level was positively associated with BMD, and that sufficient vitamin D level was needed to prevent low BMD. Vitamin D status is an important factor of BMD in adolescents.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1568-1568
Author(s):  
Pritesh S Karia ◽  
Corinne Joshu ◽  
Kala Visvanathan

1568 Background: Prior studies suggest that bilateral oophorectomy (BO), a common cancer prevention strategy, may be associated with adiposity. However, the impact of BO on lean mass, a potential marker of healthy aging, and whole-body composition is not known. Declines in lean mass have been linked to physical disability and mortality. We examined the association between BO and total and regional distribution of fat and lean mass in a cross-sectional study. Methods: The study population included women 35-70 years who underwent dual-energy x-ray absorptiometry (DXA) scans at enrollment as part of the National Health and Nutrition Examination Survey 1999-2006 (N = 3,764). Multinomial logistic regression models were used to examine the relationship between prior BO and tertiles of fat and lean mass. Models were adjusted for age, race, education, BMI at age 25, physical activity, smoking, alcohol use, parity, oral contraceptive use and hormone replacement therapy use. Results: Women with prior BO < 45 years (n = 346) had 2.9-times higher odds than women without BO (n = 3,212) of being in the highest compared to the lowest tertile of total fat mass (OR, 2.91; 95% CI, 1.93-4.38) and 2.7-times higher odds of being in the lowest compared to the highest tertile of total lean mass (OR, 2.67; 95% CI, 1.81-3.95). Results were similar when stratified by age at enrollment ( < 45, 45-54, and ≥55). Similarly, among women with normal BMI at enrollment, those with prior BO < 45 years (n = 74) had higher odds of being in the highest tertile of total fat mass (OR, 9.88, 95% CI, 2.21-44.00) and the lowest tertile of total lean mass (OR, 10.09; 95% CI, 2.72-37.46). These differences in body composition were most pronounced in the trunk region. No difference was observed in women with BO ≥45 years compared to women without BO. Conclusions: Women with a history of early BO experience significant changes in body composition, including increased fat mass and decreased lean mass, even while maintaining a normal BMI. If validated in future prospective studies, our results suggest that a comprehensive evaluation of body composition may be warranted in young women who undergo BO.


Diabetologia ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 473-485 ◽  
Author(s):  
Rory J. McCrimmon ◽  
Andrei-Mircea Catarig ◽  
Juan P. Frias ◽  
Nanna L. Lausvig ◽  
Carel W. le Roux ◽  
...  

Abstract Aims/hypothesis Intra-abdominal or visceral obesity is associated with insulin resistance and an increased risk for cardiovascular disease. This study aimed to compare the effects of semaglutide 1.0 mg and canagliflozin 300 mg on body composition in a subset of participants from the SUSTAIN 8 Phase IIIB, randomised double-blind trial who underwent whole-body dual-energy x-ray absorptiometry (DXA) scanning. Methods Adults (age ≥18 years) with type 2 diabetes, HbA1c 53–91 mmol/mol (7.0–10.5%), on a stable daily dose of metformin (≥1500 mg or maximum tolerated dose) and with an eGFR ≥60 ml min−1 [1.73 m]−2 were randomised 1:1 to semaglutide 1.0 mg once weekly and canagliflozin placebo once daily, or canagliflozin 300 mg once daily and semaglutide placebo once weekly. Body composition was assessed using whole-body DXA scans. The study participants and investigator remained blinded throughout the trial, and quality of DXA scans was evaluated in a blinded manner. Change from baseline to week 52 in total fat mass (kg) was the confirmatory efficacy endpoint. Results A subset of 178 participants (semaglutide, n = 88; canagliflozin, n = 90) underwent DXA scanning at screening and were randomised into the substudy. Of these, 114 (semaglutide, n = 53; canagliflozin, n = 61) participants had observed end-of-treatment data included in the confirmatory efficacy analysis. Of the 178 participants in the substudy, numerical improvements in body composition (including fat mass, lean mass and visceral fat mass) were observed after 52 weeks with both treatments. Total fat mass (baseline 33.2 kg) was reduced by 3.4 kg and 2.6 kg with semaglutide and canagliflozin, respectively (estimated treatment difference: –0.79 [95% CI −2.10, 0.51]). Although total lean mass (baseline 51.3 kg) was also reduced by 2.3 kg and 1.5 kg with semaglutide and canagliflozin, respectively (estimated treatment difference: −0.78 [−1.61, 0.04]), the proportion of lean mass (baseline 59.4%) increased by 1.2%- and 1.1%-point, respectively (estimated treatment difference 0.14 [−0.89, 1.17]). Changes in visceral fat mass and overall changes in body composition (assessed by the fat to lean mass ratio) were comparable between the two treatment groups. Conclusions/interpretation In individuals with uncontrolled type 2 diabetes on stable-dose metformin therapy, the changes in body composition with semaglutide and canagliflozin were not significantly different. Although numerical improvements in body composition were observed following treatment in both treatment arms, the specific impact of both treatments on body composition in the absence of a placebo arm is speculative at this stage. Trial registration ClinicalTrials.gov NCT03136484. Funding This trial was supported by Novo Nordisk A/S, Denmark.


2000 ◽  
Vol 88 (6) ◽  
pp. 2251-2259 ◽  
Author(s):  
Bradley C. Nindl ◽  
Everett A. Harman ◽  
James O. Marx ◽  
Lincoln A. Gotshalk ◽  
Peter N. Frykman ◽  
...  

Data are lacking regarding regional morphological changes among women after prolonged physical training. This study employed dual-energy X-ray absorptiometry to assess changes in whole body and regional (i.e., trunk, legs, arms) fat mass, lean mass, and bone mineral content body composition adaptations in 31 healthy women pre-, mid-, and post-6 mo of periodized physical training. These results were compared with those of 1) a control group of women who had not undergone the training program and were assessed pre- and post-6 mo and 2) a group of 18 men that was tested only once. Additionally, magnetic resonance imaging was used to assess changes in muscle morphology of the thigh in a subset of 11 members of the training group. Physical training consisted of a combination of aerobic and resistance exercise in which the subjects engaged for 5 days/wk for 24 wk. Overall, the training group experienced a 2.2% decrease, a 10% decrease, and a 2.2% increase for body mass, fat mass, and soft tissue lean mass, respectively. No changes in bone mineral content were detected. The women had less of their soft tissue lean mass distributed in their arms than did the men, both before and after the women were trained. Novel to this study were the striking differences in the responses in the tissue composition of the arms (31% loss in fat mass but no change in lean mass) compared with the legs (5.5% gain in lean mass but no change in fat mass). There was a 12% fat loss in the trunk with no change in soft tissue lean mass. Dual-energy X-ray absorptiometry and magnetic resonance imaging fat mass measurements showed good agreement ( r = 0.72–0.92); their lean mass measurements were similar as well, showing ∼5.5% increases in leg lean tissue. These findings show the importance of considering regional body composition changes, rather than whole body changes alone when assessing the effects of a periodized physical training program.


Sign in / Sign up

Export Citation Format

Share Document