scholarly journals Chemical storage of hydrogen in synthetic liquid fuels: building block for CO2-neutral mobility

Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 180-186
Author(s):  
R P Lee ◽  
L G Seidl ◽  
B Meyer

Abstract Green hydrogen is anticipated to play a major role in the decarbonization of the mobility sector. Its chemical storage in CO2-neutral synthetic liquid fuels is advantageous in terms of safety and reliability compared to other hydrogen storage developments, and thus represents a complementary building block to developments in electric and hydrogen mobility for the low-carbon transition in the mobility sector. Its development is especially relevant for transport sectors which will have no alternatives to liquid fuels in the foreseeable future. In this paper, three alternative technological routes for the chemical storage of hydrogen in CO2-neutral synthetic liquid fuels are identified and comparatively evaluated in terms of feedstock potential, product potential, demand for renewable electricity and associated costs, efficiency as well as expected market relevance. While all three routes exhibited similar levels of overall efficiencies, electricity-based liquid fuels in Germany are currently limited by the high cost and limited supply of renewable electricity. In contrast, liquid fuels generated from biogenic waste have a constant supply of biogenic feedstock and are largely independent from the supply and cost of renewable electricity.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Author(s):  
Kuo-Wei Huang ◽  
Sudipta Chatterjee ◽  
Indranil Dutta ◽  
Yanwei Lum ◽  
Zhiping Lai

Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of...


2021 ◽  
Author(s):  
Nawa Raj Baral ◽  
Minliang Yang ◽  
Benjamin G. Harvey ◽  
Blake A Simmons ◽  
Aindrila Mukhopadhyay ◽  
...  

<div> <div> <div> <p>Near-term decarbonization of aviation requires energy-dense, renewable liquid fuels. Biomass- derived 1,4-dimethylcyclooctane (DMCO), a cyclic alkane with a volumetric net heat of combustion up to 9.2% higher than Jet-A, has the potential to serve as a low-carbon, high- performance jet fuel blendstock that may enable paraffinic bio-jet fuels to operate without aromatic compounds. DMCO can be produced from bio-derived isoprenol (3-methyl-3-buten-1- ol) through a multi-step upgrading process. This study presents detailed process configurations for DMCO production to estimate the minimum selling price and life-cycle greenhouse gas (GHG) footprint considering three different hydrogenation catalysts and two bioconversion pathways. The platinum-based catalyst offers the lowest production cost and GHG footprint of $9.0/L-Jet-Aeq and 61.4 gCO2e/MJ, given the current state of technology. However, when the conversion process is optimized, hydrogenation with a Raney nickel catalyst is preferable, resulting in a $1.5/L-Jet-Aeq cost and 18.3 gCO2e/MJ GHG footprint if biomass sorghum is the feedstock. This price point requires dramatic improvements, including 28 metric-ton/ha sorghum yield and 95-98% of the theoretical maximum conversion of biomass-to-sugars, sugars-to-isoprenol, isoprenol-to-isoprene, and isoprene-to-DMCO. Because increased gravimetric energy density of jet fuels translates to reduced aircraft weight, DMCO also has the potential to improve aircraft efficiency, particularly on long-haul flights. </p> </div> </div> </div>


Author(s):  
J.A. Hearley ◽  
J.A. Little ◽  
A.J. Sturgeon

Abstract A reaction-formed NiAI intermetallic compound (IMC) powder has been deposited as a coating onto low carbon steel test coupons by the High Velocity Oxy-Fuel (HVOF) process using both gaseous and liquid fuels. The microstructure of this coating has been examined using scanning electron microscopy and x-ray diffraction and was found to depend on spraying conditions. Oxidation tests on the coating in air, between the temperatures of 800°C-1200°C, revealed that an a-alumina (Al2O3) scale formed on the coating's surface. At 1200°C, a nickel spinel (NiO/NiAl2O4) and haematite (Fe2O3) phases were observed. Diffusion studies were performed to calculate an activation energy for iron ion diffusion in NiAl.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 163 ◽  
Author(s):  
Julián Puszkiel ◽  
Aurelien Gasnier ◽  
Guillermina Amica ◽  
Fabiana Gennari

Hydrogen technology has become essential to fulfill our mobile and stationary energy needs in a global low–carbon energy system. The non-renewability of fossil fuels and the increasing environmental problems caused by our fossil fuel–running economy have led to our efforts towards the application of hydrogen as an energy vector. However, the development of volumetric and gravimetric efficient hydrogen storage media is still to be addressed. LiBH4 is one of the most interesting media to store hydrogen as a compound due to its large gravimetric (18.5 wt.%) and volumetric (121 kgH2/m3) hydrogen densities. In this review, we focus on some of the main explored approaches to tune the thermodynamics and kinetics of LiBH4: (I) LiBH4 + MgH2 destabilized system, (II) metal and metal hydride added LiBH4, (III) destabilization of LiBH4 by rare-earth metal hydrides, and (IV) the nanoconfinement of LiBH4 and destabilized LiBH4 hydride systems. Thorough discussions about the reaction pathways, destabilizing and catalytic effects of metals and metal hydrides, novel synthesis processes of rare earth destabilizing agents, and all the essential aspects of nanoconfinement are led.


2019 ◽  
Vol 117 (23) ◽  
pp. 12558-12563 ◽  
Author(s):  
Zhifei Yan ◽  
Jeremy L. Hitt ◽  
John A. Turner ◽  
Thomas E. Mallouk

Electrolysis converts electrical energy into chemical energy by storing electrons in the form of stable chemical bonds. The chemical energy can be used as a fuel or converted back to electricity when needed. Water electrolysis to hydrogen and oxygen is a well-established technology, whereas fundamental advances in CO2electrolysis are still needed to enable short-term and seasonal energy storage in the form of liquid fuels. This paper discusses the electrolytic reactions that can potentially enable renewable energy storage, including water, CO2and N2electrolysis. Recent progress and major obstacles associated with electrocatalysis and mass transfer management at a system level are reviewed. We conclude that knowledge and strategies are transferable between these different electrochemical technologies, although there are also unique complications that arise from the specifics of the reactions involved.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Georges Van Goethem

To better understand the industrial and political contexts of nuclear innovation, it is necessary to consider the history of nuclear fission technologies (four generations of nuclear power plants): (1) GEN I (construction 1950–1970): early prototypes, using mainly natural uranium as fuel, graphite as moderator, and CO2 as coolant (built at the time of “Atoms for Peace,” 1953); (2) GEN II (yesterday, construction 1970–2000): safety and reliability of nuclear facilities and energy independence (in order to ensure security of supply); (3) GEN III (today, construction 2000–2040): continuous improvement of safety and reliability, and increased industrial competitiveness in a worldwide growing energy market; (4) GEN IV (tomorrow, construction from 2040): for increased sustainability (optimal utilization of natural resources and waste minimization) and proliferation resistance. The focus in this paper is on the design objectives and research issues associated to the latter generation IV. Their benefits are discussed according to a series of ambitious criteria or technology goals established at the international level (generation IV international forum (GIF)). One will have to produce not only electricity at lower costs but also heat at very high temperatures, while exploiting a maximum of fissile and fertile matters, and recycling all actinides, under safe and reliable conditions. Scientific viability studies and technological performance tests for each system are being carried out worldwide, in line with the GIF agreement (2001). Their commercial deployment is planned for 2040. In Sec. 6, it is shown to what extent GEN IV can be considered as a beneficial, responsible, and sustainable response to the societal and industrial challenges of the future low-carbon economy.


2013 ◽  
Vol 155 (4) ◽  
pp. 3-15
Author(s):  
Hans LENZ

For many decades to come, and in the foreseeable future, internal combustion engines – in many cases with electric motors – will be with us, just like the liquid fuels they require. The importance of crude oil will decline, as these fuels will be increasingly produced on a synthetic basis without CO2 emissions. The answers to the question ”Future Mobility without Internal Combustion Engines and Fuels?“ are “no” in both cases. Purely battery-electric mobility will be applied in the future only in specific areas. Fuel-cell vehicles will hardly be used because of the extreme infrastructure investment costs. In contrast, liquid fuels will ensure the future of mobility. In this scenario, energy such as solar or wind energy will be generated without CO2 emissions.


2008 ◽  
Vol 112 (44) ◽  
pp. 17443-17449 ◽  
Author(s):  
L. Reguera ◽  
J. Balmaseda ◽  
C. P. Krap ◽  
M. Avila ◽  
E. Reguera

Author(s):  
Laura L. Holte ◽  
Glenn N. Doty ◽  
David L. McCree ◽  
Judy M. Doty ◽  
F. David Doty

Doty Energy is developing advanced processes to permit the production of fully carbon-neutral gasoline, jet fuel, diesel, ethanol, and plastics from exhaust CO2 and off-peak clean energy (wind and nuclear) at prices that can compete with fossil-derived products. Converting CO2 into fuels will eliminate the need for CO2 sequestration, reduce global CO2 emissions by 40%, and provide a nearly insatiable market for off-peak wind. It has long been known that it is theoretically possible to convert CO2 and water into standard liquid hydrocarbon fuels at high efficiency. However, the early proposals for doing this conversion had efficiencies of only 25% to 35%. That is, the chemical energy in the liquid fuels produced (gasoline, ethanol, etc.) would be about the 30% of the input energy required. The combination of the eight major technical advances made over the past two years should permit this conversion to be done at up to 60% efficiency. Off-peak grid energy averaged only $16.4/MWhr in the Minnesota hub throughout all of 2009 (the cheapest 6 hours/day averaged only $7.1/MWh). At such prices, the synthesized standard liquid fuels (dubbed “WindFuels”) should compete even when petroleum is only $45/bbl. A more scalable alternative for transportation fuels is needed than biofuels. It is in our economic and security interests to produce transportation fuels domestically at the scale of hundreds of billions of gallons per year. WindFuels can scale to this level, and as they are fully carbon-neutral they will dramatically reduce global CO2 emissions at the same time. Switching 70% of global transportation fuels from petroleum to WindFuels should be possible over the next 30 years. WindFuels will insure extremely strong growth in wind energy for many decades by generating an enormous market for off-peak wind energy. WindFuels is based largely on the commercially proven technologies of wind energy, water electrolysis, and Fischer Tropsch (FT) chemistry. Off-peak low carbon energy is used to split water into hydrogen and oxygen. Some of the hydrogen is used to reduce CO2 into carbon monoxide (CO) and water via the Reverse Water Gas Shift (RWGS) reaction. The CO and the balance of the hydrogen are fed into an FT reactor similar to those used to produce fuels and chemicals from coal or natural gas. The processes have been simulated, and key experiments are being carried out to help optimize process conditions and validate the simulations.


Sign in / Sign up

Export Citation Format

Share Document