scholarly journals Neuronal Correlates of Many-To-One Sensorimotor Mapping in Lateral Intraparietal Cortex

2020 ◽  
Vol 30 (10) ◽  
pp. 5583-5596 ◽  
Author(s):  
Yang Zhou ◽  
Yining Liu ◽  
Mingsha Zhang

Abstract Efficiently mapping sensory stimuli onto motor programs is crucial for rapidly choosing appropriate behavioral responses. While neuronal mechanisms underlying simple, one-to-one sensorimotor mapping have been extensively studied, how the brain achieves complex, many-to-one sensorimotor mapping remains unclear. Here, we recorded single neuron activity from the lateral intraparietal (LIP) cortex of monkeys trained to map multiple spatial positions of visual cue onto two opposite saccades. We found that LIP neurons’ activity was consistent with directly mapping multiple cue positions to the associated saccadic direction (SDir) regardless of whether the visual cue appeared in or outside neurons’ receptive fields. Unlike the explicit encoding of the visual categories, such cue–target mapping (CTM)–related activity covaried with the associated SDirs. Furthermore, the CTM was preferentially mediated by visual neurons identified by memory-guided saccade. These results indicate that LIP plays a crucial role in the early stage of many-to-one sensorimotor transformation.

2019 ◽  
Author(s):  
Joshua A. Seideman ◽  
Emilio Salinas ◽  
Terrence R. Stanford

The lateral intraparietal cortex (LIP) contributes to visuomotor transformations for determining where to look next. However, its spatial selectivity can signify attentional priority, motor planning, perceptual discrimination, or other mechanisms. Resolving how this LIP signal influences a perceptually guided choice requires knowing exactly when such signal arises and when the perceptual evaluation informs behavior. To achieve this, we recorded single-neuron activity while monkeys performed an urgent choice task for which the perceptual evaluation’s progress can be tracked millisecond by millisecond. The evoked presaccadic responses were strong, exhibited modest motor preference, and were only weakly modulated by sensory evidence. This modulation was remarkable, though, in that its time course preceded and paralleled that of behavioral performance (choice accuracy), and it closely resembled the statistical definition of confidence. The results indicate that, as the choice process unfolds, LIP dynamically combines attentional, motor, and perceptual signals, the former being much stronger than the latter.


Brain ◽  
2020 ◽  
Vol 143 (3) ◽  
pp. 833-843 ◽  
Author(s):  
Shaun R Patel ◽  
Jesus J Ballesteros ◽  
Omar J Ahmed ◽  
Pamela Huang ◽  
Jessica Briscoe ◽  
...  

Abstract How the brain recovers from general anaesthesia is poorly understood. Neurocognitive problems during anaesthesia recovery are associated with an increase in morbidity and mortality in patients. We studied intracortical neuronal dynamics during transitions from propofol-induced unconsciousness into consciousness by directly recording local field potentials and single neuron activity in a functionally and anatomically interconnecting somatosensory (S1, S2) and ventral premotor (PMv) network in primates. Macaque monkeys were trained for a behavioural task designed to determine trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We found that neuronal dynamics were dissociated between S1 and higher-order PMv prior to return of consciousness. The return of consciousness was distinguishable by a distinctive return of interregionally coherent beta oscillations and disruption of the slow-delta oscillations. Clustering analysis demonstrated that these state transitions between wakefulness and unconsciousness were rapid and unstable. In contrast, return of pre-anaesthetic task performance was observed with a gradual increase in the coherent beta oscillations. We also found that recovery end points significantly varied intra-individually across sessions, as compared to a rather consistent loss of consciousness time. Recovery of single neuron multisensory responses appeared to be associated with the time of full performance recovery rather than the length of recovery time. Similar to loss of consciousness, return of consciousness was identified with an abrupt shift of dynamics and the regions were dissociated temporarily during the transition. However, the actual dynamics change during return of consciousness is not simply an inverse of loss of consciousness, suggesting a unique process.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 35-35 ◽  
Author(s):  
M T Wallace

Multisensory integration in the superior colliculus (SC) of the cat requires a protracted postnatal developmental time course. Kittens 3 – 135 days postnatal (dpn) were examined and the first neuron capable of responding to two different sensory inputs (auditory and somatosensory) was not seen until 12 dpn. Visually responsive multisensory neurons were not encountered until 20 dpn. These early multisensory neurons responded weakly to sensory stimuli, had long response latencies, large receptive fields, and poorly developed response selectivities. Most striking, however, was their inability to integrate cross-modality cues in order to produce the significant response enhancement or depression characteristic of these neurons in adults. The incidence of multisensory neurons increased gradually over the next 10 – 12 weeks. During this period, sensory responses became more robust, latencies shortened, receptive fields decreased in size, and unimodal selectivities matured. The first neurons capable of cross-modality integration were seen at 28 dpn. For the following two months, the incidence of such integrative neurons rose gradually until adult-like values were achieved. Surprisingly, however, as soon as a multisensory neuron exhibited this capacity, most of its integrative features were indistinguishable from those in adults. Given what is known about the requirements for multisensory integration in adult animals, this observation suggests that the appearance of multisensory integration reflects the onset of functional corticotectal inputs.


2017 ◽  
Author(s):  
Richard Gast ◽  
Patrick Faion ◽  
Kai Standvoss ◽  
Andrea Suckro ◽  
Brian Lewis ◽  
...  

AbstractIn a constantly changing environment the brain has to make sense of dynamic patterns of sensory input. These patterns can refer to stimuli with a complex and hierarchical structure which has to be inferred from the neural activity of sensory areas in the brain. Such areas were found to be locally recurrently structured as well as hierarchically organized within a given sensory domain. While there is a great body of work identifying neural representations of various sensory stimuli at different hierarchical levels, less is known about the nature of these representations. In this work, we propose a model that describes a way to encode and decode sensory stimuli based on the activity patterns of multiple, recurrently connected neural populations with different receptive fields. We demonstrate the ability of our model to learn and recognize complex, dynamic stimuli using birdsongs as exemplary data. These birdsongs can be described by a 2-level hierarchical structure, i.e. as sequences of syllables. Our model matches this hierarchy by learning single syllables on a first level and sequences of these syllables on a top level. Model performance on recognition tasks is investigated for an increasing number of syllables or songs to recognize and compared to state-of-the-art machine learning approaches. Finally, we discuss the implications of our model for the understanding of sensory pattern processing in the brain. We conclude that the employed encoding and decoding mechanisms might capture general computational principles of how the brain extracts relevant information from the activity of recurrently connected neural populations.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009654
Author(s):  
Andrea Ferrario ◽  
Andrey Palyanov ◽  
Stella Koutsikou ◽  
Wenchang Li ◽  
Steve Soffe ◽  
...  

How does the brain process sensory stimuli, and decide whether to initiate locomotor behaviour? To investigate this question we develop two whole body computer models of a tadpole. The “Central Nervous System” (CNS) model uses evidence from whole-cell recording to define 2000 neurons in 12 classes to study how sensory signals from the skin initiate and stop swimming. In response to skin stimulation, it generates realistic sensory pathway spiking and shows how hindbrain sensory memory populations on each side can compete to initiate reticulospinal neuron firing and start swimming. The 3-D “Virtual Tadpole” (VT) biomechanical model with realistic muscle innervation, body flexion, body-water interaction, and movement is then used to evaluate if motor nerve outputs from the CNS model can produce swimming-like movements in a volume of “water”. We find that the whole tadpole VT model generates reliable and realistic swimming. Combining these two models opens new perspectives for experiments.


PLoS Biology ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. e3000931
Author(s):  
Mircea van der Plas ◽  
Simon Hanslmayr

Transcranial Alternating Current Stimulation (tACS) is a method that injects rhythmic currents into the human brain via electrodes attached to the scalp of a participant. This technique allows researchers to control naturally occurring brain rhythms and study their causal relevance for cognition. Recent findings, however, cast doubts on the effectiveness of tACS to stimulate the brain and its mode of action. Two new studies by Vieira and colleagues and Marchesotti and colleagues reported in the current issue report promising new results in showing that tACS can entrain single neuron activity and improve reading abilities in dyslexic individuals.


2011 ◽  
Vol 106 (4) ◽  
pp. 1688-1712 ◽  
Author(s):  
Phillip A. Romo ◽  
Chun Wang ◽  
Natalie Zeater ◽  
Samuel G. Solomon ◽  
Bogdan Dreher

We have recorded single-neuron activity from cytoarchitectonic area 18 of anesthetized (0.4–0.7% isoflurane in 65% N2O-35% O2 gaseous mixture) domestic cats. Neurons were identified as simple or complex on the basis of the ratios between the phase-variant (F1) component and the mean firing rate (F0) of spike responses to optimized (orientation, direction, spatial and temporal frequencies, size) high-contrast, luminance-modulated, sine-wave drifting gratings (simple: F1/F0 spike-response ratios > 1; complex: F1/F0 spike-response ratios < 1). The predominance (∼80%) of simple cells among the neurons recorded from the principal thalamorecipient layers supports the idea that most simple cells in area 18 might constitute a putative early stage in the visual information processing. Apart from the “spike-generating” regions (the classical receptive fields, CRFs), the receptive fields of three-quarters of area 18 neurons contain silent, extraclassical suppressive regions (ECRFs). The spatial extent of summation areas of excitatory responses was negatively correlated with the strength of the ECRF-induced suppression of spike responses. Lowering the stimulus contrast resulted in an expansion of the summation areas of excitatory responses accompanied by a reduction in the strength of the ECRF-induced suppression. The spatial and temporal frequency and orientation tunings of the ECRFs were much broader than those of the CRFs. Hence, the ECRFs of area 18 neurons appear to be largely “inherited” from their dorsal thalamic inputs. In most area 18 cells, costimulation of CRFs and ECRFs resulted in significant increases in F1/F0 spike-response ratios, and thus there was a contextually modulated functional continuum between the simple and complex cells.


2017 ◽  
Vol 114 (22) ◽  
pp. 5725-5730 ◽  
Author(s):  
Victor Minces ◽  
Lucas Pinto ◽  
Yang Dan ◽  
Andrea A. Chiba

A primary function of the brain is to form representations of the sensory world. Its capacity to do so depends on the relationship between signal correlations, associated with neuronal receptive fields, and noise correlations, associated with neuronal response variability. It was recently shown that the behavioral relevance of sensory stimuli can modify the relationship between signal and noise correlations, presumably increasing the encoding capacity of the brain. In this work, we use data from the visual cortex of the awake mouse watching naturalistic stimuli and show that a similar modification is observed under heightened cholinergic modulation. Increasing cholinergic levels in the cortex through optogenetic stimulation of basal forebrain cholinergic neurons decreases the dependency that is commonly observed between signal and noise correlations. Simulations of correlated neural networks with realistic firing statistics indicate that this change in the correlation structure increases the encoding capacity of the network.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Author(s):  
М.М. Руденок ◽  
А.Х. Алиева ◽  
А.А. Колачева ◽  
М.В. Угрюмов ◽  
П.А. Сломинский ◽  
...  

Несмотря на очевидный прогресс, достигнутый в изучении молекулярно-генетических факторов и механизмов патогенеза болезни Паркинсона (БП), в настоящее время стало ясно, что нарушения в структуре ДНК не описывают весь спектр патологических изменений, наблюдаемых при развитии заболевания. В настоящее время показано, что существенное влияние на патогенез БП могут оказывать изменения на уровне транскриптома. В работе были использованы мышиные модели досимптомной стадии БП, поздней досимптомной и ранней симптомной (РСС) стадиями БП. Для полнотранскриптомного анализа пулов РНК тканей черной субстанции и стриатума мозга мышей использовались микрочипы MouseRef-8 v2.0 Expression BeadChip Kit («Illumina», США). Полученные данные указывают на последовательное вовлечение транскриптома в патогенез БП, а также на то, что изменения на транскриптомном уровне процессов транспорта и митохондриального биогенеза могут играть важную роль в нейродегенерации при БП уже на самых ранних этапах. Parkinson’s disease (PD) is a complex systemic disease, mainly associated with the death of dopaminergic neurons. Despite the obvious progress made in the study of molecular genetic factors and mechanisms of PD pathogenesis, it has now become clear that violations in the DNA structure do not describe the entire spectrum of pathological changes observed during the development of the disease. It has now been shown that changes at the transcriptome level can have a significant effect on the pathogenesis of PD. The authors used models of the presymptomatic stage of PD with mice decapitation after 6 hours (6 h-PSS), presymptomatic stage with decapitation after 24 hours (24 h-PSS), advanced presymptomatic (Adv-PSS) and early symptomatic (ESS) stages of PD. For whole transcriptome analysis of RNA pools of the substantia nigra and mouse striatum, the MouseRef-8 v2.0 Expression BeadChip Kit microchips (Illumina, USA) were used. As a result of the analysis of whole transcriptome data, it was shown that, there are a greater number of statistically significant changes in the tissues of the brain and peripheral blood of mice with Adv-PSS and ESS models of PD compared to 6 h-PSS and 24 h-PSS models. In general, the obtained data indicate the sequential involvement of the transcriptome in the pathogenesis of PD, as well as the fact that changes at the transcriptome level of the processes of transport and mitochondrial biogenesis can play an important role in neurodegeneration in PD at an early stage.


Sign in / Sign up

Export Citation Format

Share Document