Hemispheric Module-Specific Influence of the X Chromosome on White Matter Connectivity: Evidence from Girls with Turner Syndrome

2019 ◽  
Vol 29 (11) ◽  
pp. 4580-4594 ◽  
Author(s):  
Chenxi Zhao ◽  
Liyuan Yang ◽  
Sheng Xie ◽  
Zhixin Zhang ◽  
Hui Pan ◽  
...  

AbstractTurner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females, offering a valuable human “knockout model” to study the functioning patterns of the X chromosome in the human brain. Little is known about whether and how the loss of the X chromosome influences the brain structural wiring patterns in human. We acquired a multimodal MRI dataset and cognitive assessments from 22 girls with TS and 21 age-matched control girls to address these questions. Hemispheric white matter (WM) networks and modules were derived using refined diffusion MRI tractography. Statistical comparisons revealed a reduced topological efficiency of both hemispheric networks and bilateral parietal modules in TS girls. Specifically, the efficiency of right parietal module significantly mediated the effect of the X chromosome on working memory performance, indicating that X chromosome loss impairs working memory performance by disrupting this module. Additionally, TS girls showed structural and functional connectivity decoupling across specific within- and between-modular connections, predominantly in the right hemisphere. These findings provide novel insights into the functional pathways in the brain that are regulated by the X chromosome and highlight a module-specific genetic contribution to WM connectivity in the human brain.

2002 ◽  
Vol 94 (2) ◽  
pp. 551-558 ◽  
Author(s):  
William D. S. Killgore

An asymmetry of anterior cerebral activation favoring the right hemisphere has been associated with dispositional negative affect including trait-anxiety, while the opposite appears true of cerebral asymmetry favoring the left hemisphere. It was hypothesized that an asymmetry of cerebral activation, as defined by scores on a measure of trait-anxiety, ipsilateral to the side of an anterior brain lesion would be associated with less efficient cognitive processing than greater activation in the hemisphere contralateral to the lesion. Patients with anterior left ( n = 16) or right ( n = 15) hemisphere lesions completed the State-Trait Anxiety Inventory and several neurocognitive tasks. Of the abilities tested, only Digit Span scores showed an interaction between side of lesion and presumed activation asymmetry. Patients with right- but not with left-hemisphere damage showed significant differences in working memory performance depending on the presumed direction of asymmetry of the two hemispheres, supporting the dual roles of the right hemisphere in affective processing and directed attention.


Author(s):  
Ekaterina V. Pechenkova ◽  
Yana R. Panikratova ◽  
Maria A. Fomina ◽  
Elena A. Mershina ◽  
Daria A. Bazhenova ◽  
...  

Although working memory (WM) is crucial for intellectual abilities, not much is known about its brain underpinnings, especially the structural connectivity. We used diffusion tensor imaging (DTI) to look across the whole brain for the white matter integrity correlates of the individual differences in the reading span (verbal WM capacity during reading) in healthy adults. Right-handed healthy native Russian speakers (N = 67) underwent DTI on a 3T Philips Ingenia scanner. Verbal WM was assessed with the Daneman-Carpenter reading span test (Russian version). Fractional anisotropy maps from each participant were entered into the group tract-based spatial statistics analysis with the reading span as a covariate; the results were TFCE-corrected. After taking into account effects of age, sex, education and handedness, reading span positively correlated with the white matter integrity in multiple sites: the body, the genu and the splenium of corpus callosum; bilateral corona radiata (anterior, posterior, and superior); bilateral superior longitudinal fasciculus; several tracts in the right hemisphere only, including the internal and external capsule; bilateral superior parietal and frontal white matter. Although the left hemisphere is central for verbal processing, we revealed the important role of the right hemisphere white matter for the verbal WM capacity. Our finding indicates that larger verbal working memory span may originate from additional processing resources of the right hemisphere.


Author(s):  
Ekaterina Pechenkova ◽  
Yana Panikratova ◽  
Maria Fomina ◽  
Elena Mershina ◽  
Daria Bazhenova ◽  
...  

Although working memory (WM) is crucial for intellectual abilities, not much is known about its brain underpinnings, especially the structural connectivity. We used diffusion tensor imaging (DTI) to look across the whole brain for the white matter integrity correlates of the individual differences in the reading span (verbal WM capacity during reading) in healthy adults. Right-handed healthy native Russian speakers (N = 47) underwent DTI on a 3T Philips Ingenia scanner. Verbal WM was assessed with the Daneman-Carpenter reading span test (Russian version). Fractional anisotropy maps from each participant were entered into the group tract-based spatial statistics analysis with the reading span as a covariate; the results were TFCE-corrected. Reading span positively correlated with the white matter integrity in several sites of the right hemisphere: the body and the splenium of corpus callosum; the posterior limb of internal capsule; posterior corona radiata; and superior parietal white matter. Although the left hemisphere is central for verbal processing, we revealed the important role of the right hemisphere white matter for the verbal WM capacity. Our finding indicates that larger verbal working memory span may originate from additional processing resources of the right hemisphere.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sabine Dziemian ◽  
Sarah Appenzeller ◽  
Claudia C. von Bastian ◽  
Lutz Jäncke ◽  
Nicolas Langer

ObjectivesWorking memory is essential for daily life skills like reading comprehension, reasoning, and problem-solving. Healthy aging of the brain goes along with working memory decline that can affect older people’s independence in everyday life. Interventions in the form of cognitive training are a promising tool for delaying age-related working memory decline, yet the underlying structural plasticity of white matter is hardly studied.MethodsWe conducted a longitudinal diffusion tensor imaging study to investigate the effects of an intensive four-week adaptive working memory training on white matter integrity quantified by global and tract-wise mean diffusivity. We compared diffusivity measures of fiber tracts that are associated with working memory of 32 young and 20 older participants that were randomly assigned to a working memory training group or an active control group.ResultsThe behavioral analysis showed an increase in working memory performance after the four-week adaptive working memory training. The neuroanatomical analysis revealed a decrease in mean diffusivity in the working memory training group after the training intervention in the right inferior longitudinal fasciculus for the older adults. There was also a decrease in mean diffusivity in the working memory training group in the right superior longitudinal fasciculus for the older and young participants after the intervention.ConclusionThis study shows that older people can benefit from working memory training by improving their working memory performance that is also reflected in terms of improved white matter integrity in the superior longitudinal fasciculus and the inferior longitudinal fasciculus, where the first is an essential component of the frontoparietal network known to be essential in working memory.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 561-571
Author(s):  
Gunnar Heuser ◽  
Ismael Mena ◽  
Francisca Alamos

Exposures to neurotoxic chemicals such as pesticides, glues, solvents, etc. are known to induce neurologic and psychiatric symptomatology. We report on 41 patients 16 young patients (6 males, 10 females, age 34 8 yrs.) and 25 elderly patients (9 males, 16 females, age 55 7 yrs). Fifteen of them were exposed to pesticides, and 29 to solvents. They were studied with quantitative and qualitative analysis of regional cerebral bood flow (rCBF), performed with 30 mCi of Xe-133 by inhalation, followed by 30 mCi of Tc-HMPAO given intravenously. Imaging was performed with a brain dedicated system, distribution of rCBF was assessed with automatic ROI definition, and HMPAO was normalized to maximal pixel activity in the brain. Results of Xe rCBF are expressed as mean and S.D. in ml/min/100g, and HMPAO as mean and S.D. uptake per ROI, and compared with age-matched controls 10 young and 20 elderly individuals. Neurotoxics HMPAO Uptake Young Elderly R. Orbital frontal R. Dorsal frontal .70 .66 p < 0.05 R. Temporal .64 p < 0.001 R. Parietal .66 .66 We conclude that patients exposed to chemicals present with diminished CBF, worse in the right hemisphere, with random presentation of areas of hypoperfusion, more prevalent in the dorsal frontal and parietal lobes. These findings are significantly different from observations in patients with chronic fatigue and depression, suggesting primary cortical effect, possibly due to a vasculitis process.


Author(s):  
Selma Lugtmeijer ◽  
◽  
Linda Geerligs ◽  
Frank Erik de Leeuw ◽  
Edward H. F. de Haan ◽  
...  

AbstractWorking memory and episodic memory are two different processes, although the nature of their interrelationship is debated. As these processes are predominantly studied in isolation, it is unclear whether they crucially rely on different neural substrates. To obtain more insight in this, 81 adults with sub-acute ischemic stroke and 29 elderly controls were assessed on a visual working memory task, followed by a surprise subsequent memory test for the same stimuli. Multivariate, atlas- and track-based lesion-symptom mapping (LSM) analyses were performed to identify anatomical correlates of visual memory. Behavioral results gave moderate evidence for independence between discriminability in working memory and subsequent memory, and strong evidence for a correlation in response bias on the two tasks in stroke patients. LSM analyses suggested there might be independent regions associated with working memory and episodic memory. Lesions in the right arcuate fasciculus were more strongly associated with discriminability in working memory than in subsequent memory, while lesions in the frontal operculum in the right hemisphere were more strongly associated with criterion setting in subsequent memory. These findings support the view that some processes involved in working memory and episodic memory rely on separate mechanisms, while acknowledging that there might also be shared processes.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


Sign in / Sign up

Export Citation Format

Share Document