scholarly journals Working Memory Training Effects on White Matter Integrity in Young and Older Adults

2021 ◽  
Vol 15 ◽  
Author(s):  
Sabine Dziemian ◽  
Sarah Appenzeller ◽  
Claudia C. von Bastian ◽  
Lutz Jäncke ◽  
Nicolas Langer

ObjectivesWorking memory is essential for daily life skills like reading comprehension, reasoning, and problem-solving. Healthy aging of the brain goes along with working memory decline that can affect older people’s independence in everyday life. Interventions in the form of cognitive training are a promising tool for delaying age-related working memory decline, yet the underlying structural plasticity of white matter is hardly studied.MethodsWe conducted a longitudinal diffusion tensor imaging study to investigate the effects of an intensive four-week adaptive working memory training on white matter integrity quantified by global and tract-wise mean diffusivity. We compared diffusivity measures of fiber tracts that are associated with working memory of 32 young and 20 older participants that were randomly assigned to a working memory training group or an active control group.ResultsThe behavioral analysis showed an increase in working memory performance after the four-week adaptive working memory training. The neuroanatomical analysis revealed a decrease in mean diffusivity in the working memory training group after the training intervention in the right inferior longitudinal fasciculus for the older adults. There was also a decrease in mean diffusivity in the working memory training group in the right superior longitudinal fasciculus for the older and young participants after the intervention.ConclusionThis study shows that older people can benefit from working memory training by improving their working memory performance that is also reflected in terms of improved white matter integrity in the superior longitudinal fasciculus and the inferior longitudinal fasciculus, where the first is an essential component of the frontoparietal network known to be essential in working memory.

2019 ◽  
Vol 3 (4) ◽  
pp. 376-387
Author(s):  
Chieh-En Jane Tseng ◽  
Leona Pascoe ◽  
Gehan Roberts ◽  
Lex W. Doyle ◽  
Katherine J. Lee ◽  
...  

Abstract Children born extremely preterm (EP; < 28 weeks of gestation) or extremely low birth weight (ELBW; < 1000 g) are at increased risk of working memory deficits compared with their term-born peers and may benefit from working memory training. This study aimed to determine whether Cogmed Working Memory Training®, compared with a placebo training program, was associated with changes in resting-state functional connectivity (rsfc) and whether these changes correlated with working memory performance in EP/ELBW children. Twenty-one 7-year-old EP/ELBW children were enrolled in a double-blinded randomized controlled trial and had magnetic resonance imaging (MRI) assessments (Cogmed, n = 12; placebo (a non-adaptive version of Cogmed), n = 9). Prior to training (baseline) and 2 weeks post-training, all children received a cognitive assessment, inclusive of immediate memory and working memory measures and an MRI. The Cogmed Improvement Index was used as a measure of improvement in trained activities in the Cogmed group. Resting-state functional MRI was used to measure training-related changes in intra- and inter-network rsfc. The networks assessed include the default mode network, the left and right central executive networks, the bilateral executive network, the dorsal attention network, and the salience network. rsfc data were compared between treatment groups and investigated in relation to changes in working memory performance. There was little evidence of differences in intra- or inter-network rsfc strength changes from baseline to post-training between treatment groups. In the Cogmed group, working memory performance was associated with increased rsfc from baseline to post-training within the precuneus network, but not in the placebo group. In the Cogmed group, results that did not survive multiple comparison correction further showed that improvement in trained activities was associated with increased rsfc between the left central and bilateral executive networks, and with decreased rsfc within the right central executive network and between the right central executive and salience networks. Changes in rsfc may facilitate working memory performance following Cogmed training. Further studies are needed to investigate how changes in rsfc are associated with behavioral changes to better support working memory in vulnerable groups.


Intelligence ◽  
2021 ◽  
Vol 86 ◽  
pp. 101541
Author(s):  
Linette Lawlor-Savage ◽  
Mavis Kusi ◽  
Cameron M. Clark ◽  
Vina M. Goghari

2016 ◽  
Vol 44 (8) ◽  
pp. 1168-1182 ◽  
Author(s):  
Laura E. Matzen ◽  
Michael C. Trumbo ◽  
Michael J. Haass ◽  
Michael A. Hunter ◽  
Austin Silva ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Megan M Kangiser ◽  
Alicia M Thomas ◽  
Christine M Kaiver ◽  
Krista M Lisdahl

Abstract Objective Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. Methods Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18–25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. Results Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus—temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. Conclusions Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


2017 ◽  
Vol 28 (7) ◽  
pp. 907-920 ◽  
Author(s):  
Jonna Nilsson ◽  
Alexander V. Lebedev ◽  
Anders Rydström ◽  
Martin Lövdén

The promise of transcranial direct-current stimulation (tDCS) as a modulator of cognition has appealed to researchers, media, and the general public. Researchers have suggested that tDCS may increase effects of cognitive training. In this study of 123 older adults, we examined the interactive effects of 20 sessions of anodal tDCS over the left prefrontal cortex (vs. sham tDCS) and simultaneous working memory training (vs. control training) on change in cognitive abilities. Stimulation did not modulate gains from pre- to posttest on latent factors of either trained or untrained tasks in a statistically significant manner. A supporting meta-analysis ( n = 266), including younger as well as older individuals, showed that, when combined with training, tDCS was not much more effective than sham tDCS at changing working memory performance ( g = 0.07, 95% confidence interval, or CI = [−0.21, 0.34]) and global cognition performance ( g = −0.01, 95% CI = [−0.29, 0.26]) assessed in the absence of stimulation. These results question the general usefulness of current tDCS protocols for enhancing the effects of cognitive training on cognitive ability.


2017 ◽  
Vol 21 (5) ◽  
pp. 995-1008 ◽  
Author(s):  
NANDINI C. SINGH ◽  
ARCHITH RAJAN ◽  
ARCHANA MALAGI ◽  
KEERTHI RAMANUJAN ◽  
MATTEO CANINI ◽  
...  

DTI is an established method to study cerebral white-matter microstructure. Two established measures of DTI are fractional anisotropy (FA) and mean diffusivity (MD) and both differ for bilingual and monolingual speakers. Less is known about differences in two other measures called radial (RD) and axial diffusivity (AD). We report differences in mean RD and AD-values in the right superior longitudinal fasciculus (SLF) and forceps minor between bilingual (Hindi–English) and monolingual (English) speakers as well as differences in mean FA-values in the anterior thalamic radiation, right inferior fronto-occipital and inferior longitudinal fasciculus (ILF) and mean MD-values in forceps minor and bilateral SLF. Noteworthy, a positive correlation between L2 proficiency and mean RD-values in the right SLF was observed. We suggest that changes in the geometry of white matter tracts reflect regular bilingual language experience and contend that neuroplasticity in right SLF results from demands on cognitive control for bilingual speakers.


2021 ◽  
Vol 26 (3) ◽  
pp. 2714-2721
Author(s):  
XIAOFENG YANG ◽  
◽  
WANMENG XIE ◽  

Our objective was to study the correlation between Diffusion tensor MR imaging (DTI) effect and white matter structural integrity, working memory in leukoaraiosis patients. 100 leukoaraiosis patients referring to the First Affiliated Hospital of Beijing Medical University from December 2018 to December 2019, were selected as study subjects and divided into four groups according to disease severity: lesion-free group, mild lesion group, moderate lesion group, and severe lesion group. All patients underwent magnetic resonance diffusion tensor imaging to collect DWI images and analyze Fractional anisotropy (FA), mean diffusivity (MD), ReHo values of white matter area under different grading. The patients’ working memory was tested via auditory verb learning test and Stroop color word test, so that correlation between white matter structural integrity and working memory can be analyzed. Results: There are statistically significant differences in FA values of the right posterior thalamic radiation, the right sagittal layer and the right superior longitudinal fasciculus, MD values of the right sagittal layer, the right cingulum bundle, the left cingulum bundle, the right inferior fasciculus fronto-occipitalis and the left inferior fasciculus frontooccipitalis, as well as instant recall, delayed recall, delayed recognition, card A (dot), card B (character), card C (color word) and SIE value (P<0.01). Correlation is shown between white matter structural integrity and working memory, gender, age, grading, disease course, recurrence interval, white matter area, and testing methods. There was a correlation between DTI effect and white matter structural integrity, working memory in leukoaraiosis patients, and leukoaraiosis patients have memory impairment.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S249-S250
Author(s):  
Seda Arslan ◽  
Tuba Şahin ◽  
Didenur Şahin ◽  
Timothea Toulopoulou

Abstract Background Psychotic disorders are characterized by neurobiological deviations, including in the macro and microstructure of white matter. White matter alterations are also seen in psychosis-proneness and in individuals who have a high risk of psychosis. For example, studies have indicated decreases in white matter integrity in the genu/forceps minor of corpus callosum (CC) in the latter populations. Anterior corona radiata (ACR) is one crucial white-matter tract connecting the anterior cingulate cortex to the striatum. Indeed, reductions in the white matter structure of anterior genu of CC significantly predict the transition from ultra-high risk to psychosis. However, there is a gap in the literature related to observing the psychosis-proneness by applying both micro and macrostructural brain analyses, and most of the microstructural white matter studies in psychosis focus on fractional anisotropy (FA) and not include mean diffusivity (MD). Thus, the current study aims to assess whether white matter deviations in CG, ACR, and CC, are associated with psychosis proneness by combining both tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM) analyses in a sample of participants with psychosis proneness (PP) and without psychosis proneness (NPP). Methods The study included 53 participants (29 PP vs. 24 NPP) whose ages were between 17 and 24 years. Participants were split into two groups based on their scores on Structured Interview for Schizotypy assessment, a well-validated instrument of psychosis proneness. White matter integrity was analyzed via diffusion tensor imaging (DTI) and white matter volume (WMV) via VBM. Two sample t-test was used in GLM for both DTI and VBM analyses. FA, MD, and VMV were compared between two groups to observe micro and macro white matter structure alterations in the region of interest. Results DTI analysis revealed decreased FA values in the right ACR and right genu of the CC in the psychosis-proneness group (F(1,52)= 7.37, p= 0.009). Moreover, VBM showed a significant WMV decreases in the right CG, Brodmann areas 8, 9, and 32 in the PP group (F(1,52)= 50.85, uncorrected p&lt;0.01). However, MD did not differ between the two groups (F(1,51)= 3.65, p=0.06) Discussion These findings suggest that PP associated with decreased white matter integrity in ACR, genu of CC, and also reduced white matter volumes in the right CG, Brodmann areas 8, 9, and 32. Significant FA decreases might result from alterations in radial or axial diffusivity since we did not observe significant MD differences between two groups. The current findings suggested that participants with PP had both macro and micro white matter structure disruptions, mostly in frontal parts of the right cerebrum, compared to no PP group.


Sign in / Sign up

Export Citation Format

Share Document