scholarly journals Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons

2020 ◽  
Vol 45 (5) ◽  
pp. 333-346 ◽  
Author(s):  
Maria Lissitsyna Bloom ◽  
Lucille B Johnston ◽  
Sandeep Robert Datta

Abstract Both canonical olfactory sensory neurons (OSNs) and sensory neurons belonging to the guanylate cyclase D (GCD) “necklace” subsystem are housed in the main olfactory epithelium, which is continuously bombarded by toxins, pathogens, and debris from the outside world. Canonical OSNs address this challenge, in part, by undergoing renewal through neurogenesis; however, it is not clear whether GCD OSNs also continuously regenerate and, if so, whether newborn GCD precursors follow a similar developmental trajectory to that taken by canonical OSNs. Here, we demonstrate that GCD OSNs are born throughout adulthood and can persist in the epithelium for several months. Phosphodiesterase 2A is upregulated early in the differentiation process, followed by the sequential downregulation of β-tubulin and the upregulation of CART protein. The GCD and MS4A receptors that confer sensory responses upon GCD neurons are initially expressed midway through this process but become most highly expressed once CART levels are maximal late in GCD OSN development. GCD OSN maturation is accompanied by a horizontal migration of neurons toward the central, curved portions of the cul-de-sac regions where necklace cells are concentrated. These findings demonstrate that—like their canonical counterparts—GCD OSNs undergo continuous renewal and define a GCD-specific developmental trajectory linking neurogenesis, maturation, and migration.

2011 ◽  
Vol 106 (3) ◽  
pp. 1274-1287 ◽  
Author(s):  
Tatsuya Ogura ◽  
Steven A. Szebenyi ◽  
Kurt Krosnowski ◽  
Aaron Sathyanesan ◽  
Jacqueline Jackson ◽  
...  

The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca2+ imaging experiments, ACh induced increases in intracellular Ca2+ levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca2+ increases in OSNs. Instead ACh suppressed the Ca2+ increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M1 through M5 mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca2+ increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium.


2019 ◽  
Author(s):  
Aashutosh Vihani ◽  
Xiaoyang Serene Hu ◽  
Sivaji Gundala ◽  
Sachiko Koyama ◽  
Eric Block ◽  
...  

AbstractUnderstanding how genes and experiences work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the context of the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell-types, in mice. We identified a subpopulation of at least three types of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated female mice and responded robustly to the male-specific semiochemicals 2-sec-butyl-4,5-dihydrothaizole and (methylthio)methanethiol. Sex-combined housing led to a robust attenuation of the female over-representation. Testing of Bax null mice revealed a Bax-dependence in generating the sexual dimorphism in sex-separated mice. Altogether, our results suggest a profound role of experience in influencing homeostatic neural lifespan mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aashutosh Vihani ◽  
Xiaoyang Serene Hu ◽  
Sivaji Gundala ◽  
Sachiko Koyama ◽  
Eric Block ◽  
...  

Understanding how genes and experience work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex-combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Baxwas necessary to generate the dimorphic representations. Altogether, our results suggest a role of experience and activity in influencing homeostatic mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.


2018 ◽  
Author(s):  
Zhi Huang ◽  
Arthur D. Zimmerman ◽  
Steven D. Munger

ABSTRACTThe main olfactory bulb (MOB) is differentiated into subregions based on their innervation by molecularly distinct chemosensory neurons. For example, olfactory sensory neurons (OSNs) that employ a cGMP-mediated transduction cascade – guanylyl-cyclase D-expressing (GC-D+) OSNs of the main olfactory epithelium (MOE) and chemosensory neurons of the Grueneberg ganglion (GGNs) – project to distinct groups of “necklace” glomeruli encircling the caudal MOB. To better understand the unique functionality and neural circuitry of the necklace glomeruli and their associated sensory neurons, we sought to identify additional molecular markers that would differentiate GC-D+ OSNs and GGNs as well as their target glomeruli. We found in mouse that GC-D+ OSNs, but not other MOE OSNs or GGNs, express the neuropeptide CART (cocaine- and amphetamine-regulated transcript). Both GC-D+ OSNs and GGNs, but not other MOE OSNs, express the Ca2+/calmodulin-dependent phosphodiesterase Pde1a, which is immunolocalized throughout the dendrites, somata and axons of these neurons. Stronger Pde1a immunolabeling in necklace glomeruli innervated by GGNs than in those innervated by GC-D+ OSNs suggests either greater Pde1a expression in individual GGNs than in GC-D+ OSNs or a difference in sensory neuron innervation density between the two types of necklace glomeruli. Together, the unique molecular signatures of GC-D+ OSNs, GGNs and their MOB targets offer important tools for understanding the processing of chemosensory information by olfactory subsystems associated with the necklace glomeruli.


2009 ◽  
Vol 101 (6) ◽  
pp. 2898-2906 ◽  
Author(s):  
Agnès Savigner ◽  
Patricia Duchamp-Viret ◽  
Xavier Grosmaitre ◽  
Michel Chaput ◽  
Samuel Garcia ◽  
...  

In mammals, the sense of smell is modulated by the status of satiety, which is mainly signaled by blood-circulating peptide hormones. However, the underlying mechanisms linking olfaction and food intake are poorly understood. Here we investigated the effects of two anorectic peptides, insulin and leptin, on the functional properties of olfactory sensory neurons (OSNs). Using patch-clamp recordings, we analyzed the spontaneous activity of rat OSNs in an in vitro intact epithelium preparation. Bath perfusion of insulin and leptin significantly increased the spontaneous firing frequency in 91.7% ( n = 24) and 75.0% ( n = 24) of the cells, respectively. When the activity was electrically evoked, both peptides shortened the latency to the first action potential by ∼25% and decreased the interspike intervals by ∼13%. While insulin and leptin enhanced the electrical excitability of OSNs in the absence of odorants, they surprisingly reduced the odorant-induced activity in the olfactory epithelium. Insulin and leptin decreased the peak amplitudes of isoamyl acetate-induced electroolfactogram (EOG) signals to 46 and 38%, respectively. When measured in individual cells by patch-clamp recordings, insulin and leptin decreased odorant-induced transduction currents and receptor potentials. Therefore by increasing the spontaneous activity but reducing the odorant-induced activity of OSNs, an elevated insulin and leptin level (such as after a meal) may result in a decreased global signal-to-noise ratio in the olfactory epithelium, which matches the smell ability to the satiety status.


eNeuro ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. ENEURO.0266-19.2019 ◽  
Author(s):  
Teresa Liberia ◽  
Eduardo Martin-Lopez ◽  
Sarah J. Meller ◽  
Charles A. Greer

2020 ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background: Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although the causes of damage have been proposed in every olfactory system including olfactory epithelium, olfactory bulb and olfactory cortex, the main causes of AD- related hyposmia are largely unknown. Methods: We here focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also histologically confirmed the pathological changes in three-month-old 5xFAD mouse models which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of anatomical plane. Results: We observed the odorant group, which 5xFAD mouse could not detect, also neither did physiologically activate the OSNs that propagate to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the ecto-ventrally located OSNs that showed reduced responses to odorants. We also observed irreversible damage to the ecto-region of the olfactory epithelium by measuring impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions: Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely-associated with peripheral OSN’s loss could be a leading cause of the AD-related hyposmia, a characteristic of early AD.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ankur Saxena ◽  
Brian N Peng ◽  
Marianne E Bronner

The sense of smell in vertebrates is detected by specialized sensory neurons derived from the peripheral nervous system. Classically, it has been presumed that the olfactory placode forms all olfactory sensory neurons. In contrast, we show that the cranial neural crest is the primary source of microvillous sensory neurons within the olfactory epithelium of zebrafish embryos. Using photoconversion-based fate mapping and live cell tracking coupled with laser ablation, we followed neural crest precursors as they migrated from the neural tube to the nasal cavity. A subset that coexpressed Sox10 protein and a neurogenin1 reporter ingressed into the olfactory epithelium and differentiated into microvillous sensory neurons. Timed loss-of-function analysis revealed a critical role for Sox10 in microvillous neurogenesis. Taken together, these findings directly demonstrate a heretofore unknown contribution of the cranial neural crest to olfactory sensory neurons in zebrafish and provide important insights into the assembly of the nascent olfactory system.


2021 ◽  
pp. 1-16
Author(s):  
Maurizio Lazzari ◽  
Simone Bettini ◽  
Liliana Milani ◽  
Maria G. Maurizii ◽  
Valeria Franceschini

Abstract Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.


Sign in / Sign up

Export Citation Format

Share Document