Capillary Electrophoresis Method for Determination of Escitalopram Oxalate in Urine Samples and Different Dosage Forms

2020 ◽  
Vol 58 (8) ◽  
pp. 759-769
Author(s):  
Wafa F S Badulla ◽  
Arın G Dal Poçan ◽  
Zeki Atkoşar ◽  
Göksel Arlı

Abstract Application of capillary electrophoresis (CE) has become a rapidly growing analytical technique for the estimation of drugs in pharmaceutical dosage forms and biological fluids. In this study, an effective and sensitive method was developed for the determination of escitalopram oxalate (ESC-OX) by CE with diode-array detection at 200 nm. The separation was achieved by a fused silica capillary with 40 cm effective length (48.5 cm total, 75 μm i.d.). The background electrolyte was composed of 15 mM phosphate buffer (pH 2.5). The applied potential was 22.5 kV, and the samples were injected at 50 mbar pressure for 10 s. Metoprolol was used as an internal standard (IS). The migration time under these optimum conditions was 6.51 ± 0.07 and 6.73 ± 0.08 min for ESC-OX and IS, respectively, with total run time 7 min. The method was validated for linearity, precision, accuracy, specificity and sensitivity. The limit of detection was calculated as 3.85 and 5.07 ng mL−1 for standard and urine samples, respectively. The developed method was employed successfully for the determination of ESC-OX in different pharmaceutical dosage forms and spiked human urine after simple liquid–liquid extraction with good recovery.

2002 ◽  
Vol 48 (7) ◽  
pp. 1049-1058 ◽  
Author(s):  
Jifeng Liu ◽  
Weidong Cao ◽  
Haibo Qiu ◽  
Xiuhua Sun ◽  
Xiurong Yang ◽  
...  

Abstract Background: Capillary electrophoresis (CE) with tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+]-electrogenerated chemiluminescence (ECL) detection is a promising method for clinical analysis. In this study, a method combining CE with Ru(bpy)32+ ECL (CE-ECL) detection that can be applied to amine-containing clinical species was developed, and the performance of CE-ECL as a quantitative method for determination of sulpiride in human plasma or urine was evaluated. Methods: Sulpiride was separated by capillary zone electrophoresis in uncoated fused-silica capillaries [50 cm × 25 μm (i.d.)] filled with phosphate buffer (pH 8.0) and a driving voltage of +15 kV, with end-column Ru(bpy)32+ ECL detection. A platinum disc electrode was used as working electrode. Sulpiride in human plasma or urine samples (100 μL) was extracted by a double-step liquid-liquid extraction procedure, dried under nitrogen at 35 °C in a water bath, and reconstituted with 100 μL of filtered water. The extraction solvent was ethyl acetate–dichloromethane (5:1 by volume). Results: Under optimum conditions (pH 8.0 phosphate buffer, injection for 6 s at 10 kV, and +1.2 V as detection potential), separation of sulpiride was accomplished within 4 min. The calibration curve was linear over a concentration range of 0.05–25.0 μmol/L, and the limit of detection was 2.9 × 10−8 mol/L for sulpiride. Intra- and interday CVs for ECL intensities were <6%. Extraction recoveries of sulpiride were 95.6–101% with CVs of 2.9–6.0%. The method was clinically validated for patient plasma and urine samples. Conclusions: CE combined with Ru(bpy)32+ ECL is reproducible, precise, selective, and enables the analysis of sulpiride in human plasma and urine. It thus is of value for rapid and efficient analysis of amine-containing analytes of clinical interest.


RSC Advances ◽  
2016 ◽  
Vol 6 (21) ◽  
pp. 17519-17530 ◽  
Author(s):  
Abdallah M. Zeid ◽  
Jenny Jeehan M. Nasr ◽  
Fathalla F. Belal ◽  
Shinya Kitagawa ◽  
Noritada Kaji ◽  
...  

Addition of β-cyclodextrin to the background electrolyte improves the separation efficiency of multi-component mixtures through inclusion complex formation.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Walaa El-Alfy ◽  
Omnia A. Ismaiel ◽  
Magda Y. El-Mammli ◽  
Abdalla Shalaby

A simple RP-HPLC-PDA method for determination of atenolol (ATN) and trimetazidine (TMZ) in human urine and tablets has been developed. Analytes were separated on a Caltrex BI column (125× 4.0 mm, 5 μm) with 25mM potassium dihydrogen phosphate pH 3.3, methanol, and acetonitrile mobile phases. The PDA detector was operated at 210 nm for TMZ and 225 nm for ATN and the flow rate was 1.0 mL/ min. Linearity was obtained over a concentration range of (1.0-100 μg/mL) for both analytes in standard solutions and the method was successfully applied for determination of target analytes in their pharmaceutical tablets. Excellent linearity was also obtained over concentration ranges of (0.25-25 μg/mL) and (0.5-25 μg/mL) in human urine for TMZ and ATN, respectively. A simple liquid-liquid extraction was applied for urine sample clean-up and a gradient method was used for chromatographic separation. The lower limit of quantitation (LOQ) was 0.99 and 0.60 μg/mL for ATN and TMZ, respectively. The limit of detection (LOD) was 0.30 and 0.18 μg/mL for ATN and TMZ, respectively. Inter- and intraday precision and accuracy for ATN were within ±1.89% in pure form and within ±2.85% in urine samples. Inter- and intraday precision and accuracy for TMZ were within ± 3.99% in pure form and within ± 3.19% in urine samples.


Author(s):  
Amir Alhaj Sakur ◽  
Bayan Balid

In this article, it has been reported new, simple, sensitive and direct spectrophotometric methods for the determination of Perindopril Erbumine (PPE) and Enalapril Maleate (ENL) in pure and in pharmaceutical forms. Spectrophotometric methods are based on the formation of yellow colored ion-pair complexes between PPE, ENL and sulphonphthalein acid dye, Bromocresol green (BCG) into chloroform were measured at the wavelength of 414 and 415nm for PPE and ENL, respectively. The optimal analytical conditions were determined. The obtained complexes (BCG: PPE) and (BCG: ENL) reached maximum absorbance directly after formation at room temperature for a stability period of 24 h. Beer’s law were obeyed in the concentration ranges of (2-20)µg/mL for PPE and (8- 44)µg/mL for ENL, the limit of detection of 0.125μg/mL and 0.230μg/mL were found for PPE and ENL, respectively. The molar absorptivity coefficients were 4.4045*104 L.moL-1.cm-1 for PPE and 1,9330*104 L.moL-1.cm-1 for ENL. The stoichiometry of the complexes formed between PPE, ENL and BCG were 1:1. No interference was observed from common excipients occurred in pharmaceutical formulations and the proposed methods have been successfully applied to determine the PPE and ENL in some pharmaceutical products and in ENL combination dosage forms with hydrochlorothiazide (HCTZ). The proposed methods were successfully validated to be utilized in the quantitative analysis of PPE and ENL in their pure and pharmaceutical products. A good agreement between the developed spectrophotometric methods with the results obtained from official reference methods for the determination of the two drugs in some real samples demonstrate that the proposed methods were suitable to quantify PPE and ENL in pharmaceutical formulations.


2008 ◽  
Vol 73 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Petr Tůma ◽  
Eva Samcová ◽  
František Opekar ◽  
Karel Štulík

Intact heparin was characterized and determined in model samples, in infusion solutions and in blood plasma by capillary electrophoresis (CE) with contactless conductivity detection. The CE separation of polydisperse heparin took place in open silica capillaries, in electrolytes containing a polymer (hydroxyethyl)cellulose, poly(ethylene glycol) or dextran. The best separation of heparin from excess inorganic ions present in real samples was attained in a background electrolyte consisting of 0.8 M acetic acid and 1% (w/v) dextran (100 kDa). The limit of detection (LOD) was 1.3 μmol l-1. This electrolyte was used in determination of heparin in blood plasma and in infusion solutions.


2010 ◽  
Vol 7 (2) ◽  
pp. 395-402
Author(s):  
Padmarajaiah Nagaraja ◽  
Ashwinee Kumar Shrestha

A spectrophotometric method has been proposed for the determination of four phenolic drugs; salbutamol, ritodrine, amoxicillin and isoxsuprine. The method is based on the oxidation of 2, 4- dinitrophenyl-hydrazine and coupling of the oxidized product with drugs to give intensely colored chromogen. Under the proposed optimum condition, beer’s law was obeyed in the concentration range of 2.5-17, 2-29, 4-33 and 5-30 μg/mL for salbutamol, ritodrine, amoxicillin and isoxsuprine respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.2, 0.83, 0.09, 0.84 μg/mL and 0.66, 2.79, 0.3 and 2.81 μg/mL in the same order. No interference was observed from common pharmaceutical adjuvants. The ringbom plots and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical dosage forms, which was compared statistically with reference methods by means oft- test andF- test and were found not to differ significantly at 95% confidence level. The procedure is characterized by its simplicity with accuracy and precision.


Author(s):  
RAGAA EL-SHEIKH ◽  
AHLAM E. ABD ELLATEIF ◽  
ESRAA AKMAL ◽  
AYMAN A. GOUDA

Objective: Three sensitive, simple, precise, reproducible, and validated spectrophotometric methods have been developed for the determination of anti-psychotic drug (asenapine maleate) in pure and pharmaceutical dosage forms. Methods: The methods are based on the formation of yellow-colored ion-pair complex between asenapine maleate and three acid dyes, namely, bromocresol purple (BCP), bromophenol blue (BPB) and bromothymol blue (BTB) with absorption maxima at 410, 414 and 416 nm, respectively. Several parameters such as pH, buffer type and volume, reagent volume, the sequence of addition and effect of extracting solvent were optimized. Results: Under the optimum experimental conditions, beer’s law is obeyed over the concentration ranges of 1.0–20, 1.0–14, and 1.0-16 μg/ml for BCP, BPB and BTB, respectively, with good correlation coefficients (0.9994-0.9998). The apparent molar absorptivity and Sandell’s sensitivity values are reported for all methods. The limit of detection (LOD) and the limit of quantification (LOQ) values are found to be 0.27, 0.30, and 0.25 μg/ml and 0.90, 1.0, and 0.83 μg/ml for BCP, BPB and BTB, respectively. The stoichiometric ratio of the formed ion-pair complexes was found to be 1:1 (drug: reagent) for all methods, as deduced by Job's method of continuous variation. Conclusion: The proposed methods were successfully applied for the determination of asenapine maleate in pharmaceutical formulations with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at the 95% confidence level and there was no significant difference between the reported and proposed methods regarding accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique in accordance with ICH guidelines.


1970 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
BM Mahbubul Alam Razib ◽  
Md. Ashik Ullah ◽  
Mohammad Abdul Kalam Azad ◽  
Rebeka Sultana ◽  
Hasina Yasmin ◽  
...  

The purpose of the study was to develop a simple, sensitive and rapid RP-HPLC method for the determination of desloratadine in marketed products. Chromatographic determination was performed in a reverse phase C18 column (250 mm × 3.3 mm I.D. , 5?m particle size) using a mixture of acetonitrile ? n-pentane sulphonic acid sodium salt monohydrate, adjusted to pH 3.0± 0.05 with phosphoric acid (60? 40 v/v) as mobile phase and delivered at a flow rate of 1 ml/min. The UV detection was set at 254 nm. The calibration range was from 2.0 to 40 ?g/ml. The method was validated in term of linearity (r2>0.98, RSD= 1.958%), precision (RSD=3.757 %) and accuracy (deviation>2.653%, RSD> 2.203%). The limit of quantification was 2 ?g/ml and the limit of detection was 0.1 ?g/ml. The linear ranges of desloratadine were 20.23 ± 0.368 ?g/ml and 6.545 ± 0.0495 ?g/ml in tablet (potency = 99.175 ± 0.718 %) and syrup (potency = 101.15 ± 1.838 %) respectively. The potency of desloratadine in marketed products was determined by this method with acceptable precision and reproducibility. Keywords: Desloratadine, marketed products, RP-HPLC, development of a method Dhaka Univ. J. Pharm. Sci. Vol.5(1-2) 2006 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Sign in / Sign up

Export Citation Format

Share Document