Investigation of Phenolic Content in Five Different Pine Barks Species Grown in Turkey by HPLC-UV and LC–MS

Author(s):  
Mehmet Emin Şeker ◽  
Ali Çelik ◽  
Kenan Dost ◽  
Ayşegül Erdoğan

Abstract Investigation of phenolic content from different pine bark species grown in Turkey was performed using a reversed-phase high pressure liquid chromatography with ultraviolet (RP-HPLC-UV) method. All phenolic constituents were separated in <26 min on reversed-phase C18 column with gradient mobile phase that consists of orthophosphoric acid, methanol and acetonitrile. Detections were made on an UV detector at 280 nm and at a flow rate of 1 mL/min. Samples were prepared according to Masqueller’s conventional sample preparation method with slight modifications. To avoid the reduction in extraction efficiency the sample preparation step was carried out under argon atmosphere. The linearity of the method was between 0.9994 and 0.9999. The detection limits for the five phenolic constituents ranged from 0122 to 0.324 mg/L. Catechin and taxifolin were found in all pine barks at a concentration of 0.065 ± 0.002–1.454 ± 0.004 and 0.015 ± 0.001–23.164 ± 0.322 mg/g, respectively. Epicatechin was determined in four pine barks between 0.027 ± 0.001 and 0.076 ± 0.002 mg/g, ferulic acid in two pine barks between 0.010 ± 0.001 and 0.022 ± 0.001 mg/g and epicatechin gallate in only one of the pine barks at 0.025 ± 0.001 mg/g. Finally, the total amount of phenolic compounds and antioxidant capacities of the pine barks were found to be very high.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amol S. Jagdale ◽  
Nilesh S. Pendbhaje ◽  
Rupali V. Nirmal ◽  
Poonam M. Bachhav ◽  
Dayandeo B. Sumbre

Abstract Background A new, sensitive, suitable, clear, accurate, and robust reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of brexpiprazole in bulk drug and tablet formulation was developed and validated in this research. Surface methodology was used to optimize the data, with a three-level Box-Behnken design. Methanol concentration in the mobile phase, flow rate, and pH were chosen as the three variables. The separation was performed using an HPLC method with a UV detector and Openlab EZchrom program, as well as a Water spherisorb C18 column (100 mm × 4.6; 5m). Acetonitrile was pumped at a flow rate of 1.0 mL/min with a 10 mM phosphate buffer balanced to a pH of 2.50.05 by diluted OPA (65:35% v/v) and detected at 216 nm. Result The developed RP-HPLC method yielded a suitable retention time for brexpiprazole of 4.22 min, which was optimized using the Design Expert-12 software. The linearity of the established method was verified with a correlation coefficient (r2) of 0.999 over the concentration range of 5.05–75.75 g/mL. For API and formulation, the percent assay was 99.46% and 100.91%, respectively. The percentage RSD for the method’s precision was found to be less than 2.0%. The percentage recoveries were discovered to be between 99.38 and 101.07%. 0.64 μg/mL and 1.95 μg/mL were found to be the LOD and LOQ, respectively. Conclusion The developed and validated RP-HPLC system takes less time and can be used in the industry for routine quality control/analysis of bulk drug and marketed brexpiprazole products. Graphical abstract


2020 ◽  
Vol 11 (4) ◽  
pp. 8047-8053
Author(s):  
Potturi Ramadevi ◽  
Kantipudi Rambabu

The main objective of this research is to develop and validate a simple, specific, precise, sensitive, cost effective and rapid Reversed-Phase High-Performance Liquid Chromatographic (RP-HPLC) method for simultaneous quantification of Felodipine and Metoprolol in bulk and pharmaceutical dosage forms. The separation of the analytes were carried out on a X-bridge phenyl column with a moving phase composed of 0.1 % Tri ethyl amine: acetonitrile (30:70 v/v) delivered at a stream of 1.0 ml/min, and separation has been observed by UV detector, at a detection wavelength of 235 nm. This method was proven to be linear over a concentration limit of 10-150 µg/ml for Metoprolol, 2-30 µg/ml for Felodipine with correlation coefficient of 0.999. The retention time of Metoprolol and Felodipine were 2.936, 4.535 minutes respectively. To separate Metoprolol and Felodipine peaks a run time of 8 min. was used. The validation results were in good agreement with acceptable limits. RSD values which are less than 2.0 % indicating the accuracy and precision of this method. Hence it was evident that the proposed method was said to be a suitable one for the regular analysis and quality control of pharmaceutical preparations which contain these active drugs either individually or in combination.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5433
Author(s):  
Natasa P. Kalogiouri ◽  
Petros D. Mitsikaris ◽  
Dimitris Klaoudatos ◽  
Athanasios N. Papadopoulos ◽  
Victoria F. Samanidou

Reversed phase-high-pressure liquid chromatographic methodologies equipped with UV detector (RP-HPLC-UV) were developed for the determination of phenolic compounds and tocopherols in almonds. Nineteen samples of Texas almonds originating from USA and Greece were analyzed and 7 phenolic acids, 7 flavonoids, and tocopherols (−α, −β + γ) were determined. The analytical methodologies were validated and presented excellent linearity (r2 > 0.99), high recoveries over the range between 83.1 (syringic acid) to 95.5% (ferulic acid) for within-day assay (n = 6), and between 90.2 (diosmin) to 103.4% (rosmarinic acid) for between-day assay (n = 3 × 3), for phenolic compounds, and between 95.1 and 100.4% for within-day assay (n = 6), and between 93.2–96.2% for between-day assay (n = 3 × 3) for tocopherols. The analytes were further quantified, and the results were analyzed by principal component analysis (PCA), and agglomerative hierarchical clustering (AHC) to investigate potential differences between the bioactive content of almonds and the geographical origin. A decision tree (DT) was developed for the prediction of the geographical origin of almonds proposing a characteristic marker with a concentration threshold, proving to be a promising and reliable tool for the guarantee of the authenticity of the almonds.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Ayman Khdair ◽  
Mohammad K. Mohammad ◽  
Khaled Tawaha ◽  
Eman Al-Hamarsheh ◽  
Hatim S. AlKhatib ◽  
...  

A simple reversed phase high-performance liquid chromatographic (RP-HPLC) method coupled with a photodiode array detector (PAD) has been developed and validated for the analysis of hederacoside C, the marker of ivy plant, in Ivy-Thyme cough syrup. Separation of hederacoside C was achieved using a Phenomenex-Gemini C18 column isothermally at C. A mobile phase system constituted of solvent A (water: acetonitrile: orthophosphoric acid (85%), 860 : 140 : 2 v/v) and solvent B (acetonitrile: orthophosphoric acid (85%), 998 : 2 v/v) was used, at gradient conditions, at a flow rate of 1.5 mL/min. Analysis was performed using UV-detection (205 nm). The method was linear over the range (0.03–0.15) mg/mL of hederacoside C (). Repeatability and intermediate precision were acceptable (RSD %). Limits of detection (LOD) and quantitation (LOQ) were 0.011 and 0.032 mg/mL, respectively. Percentage recovery was found to lie between 99.69% and 100.90% (RSD %). The method was also proved to be specific (peak-purity ).


2015 ◽  
Vol 16 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Saleha Tanjin ◽  
Farhana Islam ◽  
Md Zakir Sultan ◽  
Asma Rahman ◽  
Sharmin Reza Chowdhury ◽  
...  

A simple, sensitive and precise reversed phase high performance liquid chromatographic (RP-HPLC) method has been developed for the estimation of naproxen in pharmaceutical dosage forms. The method was developed using the mobile phase comprising of dibasic sodium phosphate buffer (Na2HPO4) at pH 7.80 (adjusted by sodium hydroxide) and acetonitrile in the ratio of 70:30 (v/v) over C-18 column (250 x 4.6 mm, 5?m, Phenomenex Inc.) at ambient temperature. The flow rate was at 0.7 ml/min and the column washing was monitored by UV detector at 225 nm. The retention time of naproxen was 4.8 ± 0.1 min. The recovery was found to be >97% which is demonstrative of accuracy of the protocol. Inter-day and intra-day precision of the newly developed method were less than the maximum allowable limit (RSD% ? 2.0) according to ICH, USP and FDA guidelines. The method showed linear response with correlation coefficient (r2) value of 0.9991. Therefore, the method was found to be accurate, reproducible, sensitive and less time consuming and can be successfully applied for routine analysis of naproxen in pharmaceutical formulations. DOI: http://dx.doi.org/10.3329/bpj.v16i2.22295 Bangladesh Pharmaceutical Journal 16(2): 137-141, 2013


Author(s):  
Vaishali Mistry ◽  
Akshay Yelwe ◽  
Amey Deshpande

Objective: The present study describes the stability indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous estimation of 5-fluorouracil and tegafur in pharmaceutical dosage forms.Method: 5-fluorouracil and tegafur the propose RP-HPLC method were developed by using Shimadzu Prominence-i LC-2030 HPLC system equipped with UV detector and chromatographic separation was carried on shim-pack gist c18 (250 × 4.6 mm, 5 μ) column at a flow rate of 1 ml/min and the run time was 10 min. The mobile phase consisted of methanol and water in the ratio of 50:50% v/v and elements were scanned using a UV detector at 271 nm.Result: The retention time of 5-fluorouracil and tegafur was found to be 2.74 and 3.66 min, respectively. A linearity response was observed in the concentration range of 13.4 μg/ml–31.3 μg/ml for 5-fluorouracil and 6 μg/ml–14 μg/ml for tegafur, respectively. Limit of detection and limit of quantification of 5-fluorouracil were 10.97 μg/ml and 33.26 μg/ml and for tegafur are 4.89 μg/ml and 14.83 μg/ml, respectively.Conclusion: The stability indicating that the method was developed by subjecting drugs to stress conditions such as acid and base hydrolysis, oxidation, photo and thermal degradation, and degraded products formed were resolved successfully from samples.


2020 ◽  
Vol 16 ◽  
Author(s):  
Revati Sonone ◽  
Leena Tandel ◽  
Vandana Jain

Background: A tablet dosage form widely used in the treatment of cough and cold, containing phenylephrine hydrochloride, paracetamol, caffeine, and diphenhydramine hydrochloride as active pharmaceutical ingredient was selected for the development of a novel, rapid, simultaneous isocratic reversed phase-high performance liquid chromatography (RP-HPLC) method. Objective: The objective of this paper was to develop and validate a novel, rapid, simple, precise, accurate and reproducible RP-HPLC method for simultaneous estimation of phenylephrine hydrochloride, paracetamol, caffeine, diphenhydramine hydrochloride in bulk and pharmaceutical dosage form. Method: Optimized chromatographic conditions were an isocratic elution with prontosil C18-column (250×4.6mm,5µ), methanol and 20mM phosphate buffer (55:45 v/v, pH 3 ) as mobile phase, flow rate 1.0 mL/min and UV detector set at λ max 220 nm. The method was validated for specificity, precision, linearity, accuracy, sensitivity, and robustness as per the International Council for Harmonization guidelines. Result: The retention times of phenylephrine hydrochloride, paracetamol, caffeine, diphenhydramine hydrochloride were found to be 2.8 min, 3.3 min, and 4.0 min and 7.3 min, respectively. This novel method was found to be rapid, simple, linear (R2> 0.99), preciserelative standard deviation < 2.0 %), accurate (recovery 98-102%), sensitive and robust. Conclusion: The proposed novel isocratic RP-HPLC method is rapid (short run time below 10min), highly selective, precise, accurate , sensitive and robust. The method was successfully applied for the simultaneous analysis of phenylephrine hydrochloride, paracetamol, caffeine, diphenhydramine hydrochloride in a pharmaceutical dosage form.


Author(s):  
Nutan Rao ◽  
Kajal D Gawde

Objective: The present study describes the stability indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous estimation of salbutamol sulfate (SAL), etofylline (ETO), and bromhexine hydrochloride (BROM) in pharmaceutical dosage forms.Methods: The proposed RP-HPLC method was developed using Shimadzu prominence-i LC-2030 HPLC system equipped with ultraviolet (UV) detector and chromatographic separation was achieved isocratically using Shim-pack C18 (250 mm×4.6mm, 5 μ) column at a flow rate of 1 ml/min and the run time was 13 min. The mobile phase consisted of acetonitrile: 0.1M potassium dihydrogen phosphate buffer (35:65) with pH adjusted to 3.0 and eluents were scanned using UV detector at 225 nm.Result: The retention time of SAL, ETO, and BROM was found to be 2.319 min, 2.698 min, and 10.329 min, respectively. The calibration curve was linear over the concentration ranges of 1.6–3.2 μg/ml, 160–320 μg/ml, and 6.4–12.8 μg/ml for SAL, ETO, and BROM, respectively.Conclusion: The stability indicating method was developed by subjecting the drugs to stress conditions such as acid and base hydrolysis, oxidation, humidity, and photo- and thermal degradation and the degraded products formed were resolved successfully from the samples. Therefore, the proposed method can be used as a more convenient and efficient option for the simultaneous estimation of all the three drugs in bulk and combined


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Xiaojun Shang ◽  
Suying Ma ◽  
Zheshen Li

A rapid, sensitive, and reproducible reverse phase high performance liquid chromatographic (RP-HPLC) method with UV detector for the determination of nimodipine in sustained release tablets was developed. The method involved using a SinoChoom ODS-BP C18reversed phase column (5 μm, 4.6 mm × 200 mm) and mobile phase consisting of methanol-acetonitrile-water (35 : 38 : 27, v/v). The flow rate is 1.0 mL/min, the UV detector was operated at 237 nm, and the column was maintained at 25°C. The method was validated according to official compendia guidelines. The calibration curve of nimodipine for RP-HPLC method was linear over the range of 10–100 μg/mL. The retention time was found at 7.50 min for nimodipine. The variation for interday and intraday assay was found to be less than 0.72%. The proposed RP-HPLC was proved to be suitable for the determination of nimodipine in sustained release tablets.


2017 ◽  
Vol 16 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Md Mahbubul Alam ◽  
Md Shahadat Hossain ◽  
Subrata Bhadra ◽  
Uttom Kumar ◽  
Abu Shara Shamsur Rouf

This study was aimed to develop a simple, sensitive and rapid procedure for the analysis of clarithromycin in pure as well as in matrix tablet dosage form by using RP-HPLC method. The chromatographic separation was achieved by a reversed phase C18 column (150 mm length × 4.6 mm i.d., 5 ?m particle size) in an isocratic mode with mobile phase comprising of acetonitrile and 0.035 M potassium dihydrogen phosphate (pH 4.4 ± 0.017) in a ratio of (55: 45, v/v). The eluent was pumped at a flow rate of 0.6 ml/min and the effluent was monitored using UV detector at 210 nm. The method was validated according to the ICH guidelines with respect to linearity, precision, accuracy, selectivity, specificity, ruggedness and robustness. It was found to be linear over the concentration range of 320- 480 ?g/ml (R2= 0.9993) with detection limit of 0.04 ?g/mL. Considering the specifications of this method, the system was found to be suitable for rapid and routine analysis of clarithromycin in pure and matrix tablet dosage form.Dhaka Univ. J. Pharm. Sci. 16(1): 69-75, 2017 (June)


Sign in / Sign up

Export Citation Format

Share Document