scholarly journals Plasma Biomarkers to Detect Prevalent or Predict Progressive Tuberculosis Associated With Human Immunodeficiency Virus–1

2018 ◽  
Vol 69 (2) ◽  
pp. 295-305 ◽  
Author(s):  
Maia Lesosky ◽  
Molebogeng X Rangaka ◽  
Cara Pienaar ◽  
Anna K Coussens ◽  
Rene Goliath ◽  
...  

Abstract Background The risk of individuals infected with human immunodeficiency virus (HIV)-1 developing tuberculosis (TB) is high, while both prognostic and diagnostic tools remain insensitive. The potential for plasma biomarkers to predict which HIV-1–infected individuals are likely to progress to active disease is unknown. Methods Thirteen analytes were measured from QuantiFERON Gold in-tube (QFT) plasma samples in 421 HIV-1–infected persons recruited within the screening and enrollment phases of a randomized, controlled trial of isoniazid preventive therapy. Blood for QFT was obtained pre-randomization. Individuals were classified into prevalent TB, incident TB, and control groups. Comparisons between groups, supervised learning methods, and weighted correlation network analyses were applied utilizing the unstimulated and background-corrected plasma analyte concentrations. Results Unstimulated samples showed higher analyte concentrations in the prevalent and incident TB groups compared to the control group. The largest differences were seen for C-X-C motif chemokine 10 (CXCL10), interleukin-2 (IL-2), IL-1α, transforming growth factor-α (TGF-α). A predictive model analysis using unstimulated analytes discriminated best between the control and prevalent TB groups (area under the curve [AUC] = 0.9), reasonably well between the incident and prevalent TB groups (AUC > 0.8), and poorly between the control and incident TB groups. Unstimulated IL-2 and IFN-γ were ranked at or near the top for all comparisons, except the comparison between the control vs incident TB groups. Models using background-adjusted values performed poorly. Conclusions Single plasma biomarkers are unlikely to distinguish between disease states in HIV-1 co-infected individuals, and combinations of biomarkers are required. The ability to detect prevalent TB is potentially important, as no blood test hitherto has been suggested as having the utility to detect prevalent TB amongst HIV-1 co-infected persons.

1994 ◽  
Vol 179 (2) ◽  
pp. 513-522 ◽  
Author(s):  
T R Kollmann ◽  
M Pettoello-Mantovani ◽  
X Zhuang ◽  
A Kim ◽  
M Hachamovitch ◽  
...  

A small animal model that could be infected with human immunodeficiency virus 1 (HIV-1) after peripheral inoculation would greatly facilitate the study of the pathophysiology of acute HIV-1 infection. The utility of SCID mice implanted with human fetal thymus and liver (SCID-hu mice) for studying peripheral HIV-1 infection in vivo has been hampered by the requirement for direct intraimplant injection of HIV-1 and the continued restriction of the resultant HIV-1 infection to the human thymus and liver (hu-thy/liv) implant. This may have been due to the very low numbers of human T cells present in the SCID-hu mouse peripheral lymphoid compartment. Since the degree of the peripheral reconstitution of SCID-hu mice with human T cells may be a function of the hu-thy/liv implant size, we increased the quantity of hu-thy/liv tissue implanted under the renal capsule and implanted hu-thy/liv tissue under the capsules of both kidneys. This resulted in SCID-hu mice in which significant numbers of human T cells were detected in the peripheral blood, spleens, and lymph nodes. After intraimplant injection of HIV-1 into these modified SCID-hu mice, significant HIV-1 infection was detected by quantitative coculture not only in the hu-thy/liv implant, but also in the spleen and peripheral blood. This indicated that HIV-1 infection can spread from the thymus to the peripheral lymphoid compartment. More importantly, a similar degree of infection of the hu-thy/liv implant and peripheral lymphoid compartment occurred after peripheral intraperitoneal inoculation with HIV-1. Active viral replication was indicated by the detection of HIV-1 gag DNA, HIV-1 gag RNA, and spliced tat/rev RNA in the hu-thy/liv implants, peripheral blood mononuclear cells (PBMC), spleens, and lymph nodes of these HIV-1-infected SCID-hu mice. As a first step in using our modified SCID-hu mouse model to investigate the pathophysiological consequences of HIV-1 infection, the effect of HIV-1 infection on the expression of human cytokines shown to enhance HIV-1 replication was examined. Significantly more of the HIV-1-infected SCID-hu mice expressed mRNA for human tumor necrosis factors alpha and beta, and interleukin 2 in their spleens, lymph nodes, and PBMC than did uninfected SCID-hu mice. This suggested that HIV-1 infection in vivo can stimulate the expression of cytokine mRNA by human T cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 44 (10) ◽  
pp. 2672-2678 ◽  
Author(s):  
J. Michael Kilby ◽  
Greg Sfakianos ◽  
Nick Gizzi ◽  
Peggy Siemon-Hryczyk ◽  
Eric Ehrensing ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) protease inhibitors have dramatically improved treatment options for HIV infection, but frequent dosing may impact adherence to highly active antiretroviral treatment regimens (HAART). Previous studies demonstrated that combined therapy with ritonavir and saquinavir allows a decrease in frequency of saquinavir dosing to twice daily. In this study, we evaluated the safety and pharmacokinetics of combining once-daily doses of the soft-gel capsule (SGC) formulation of saquinavir (saquinavir-SGC) and minidose ritonavir. Forty-four healthy HIV-negative volunteers were randomized into groups receiving once-daily doses of saquinavir-SGC (1,200 to 1,800 mg) plus ritonavir (100 to 200 mg) or a control group receiving only saquinavir-SGC (1,200 mg) three times daily. Saquinavir-SGC alone and saquinavir-SGC–ritonavir combinations were generally well tolerated, and there were no safety concerns. Addition of ritonavir (100 mg) to saquinavir-SGC (1,200 to 1,800 mg/day) increased the area under the concentration-time curve (AUC) for saquinavir severalfold, and the intersubject peak concentration in plasma and AUC variability were reduced compared to those achieved with saquinavir-SGC alone (3,600 mg/day), while trough saquinavir levels (24 h post-dose) were substantially higher than the 90% inhibitory concentration calculated from HIV-1 clinical isolates. Neither increasing the saquinavir-SGC dose to higher than 1,600 mg nor increasing ritonavir from 100 to 200 mg appeared to further enhance the AUC. These results suggest that an all once-daily HAART regimen, utilizing saquinavir-SGC plus a more tolerable low dose of ritonavir, may be feasible. Studies of once-daily saquinavir-SGC (1,600 mg) in combination with ritonavir (100 mg) in HIV-infected patients are underway.


1996 ◽  
Vol 183 (1) ◽  
pp. 99-108 ◽  
Author(s):  
G Zauli ◽  
M Vitale ◽  
D Gibellini ◽  
S Capitani

Human CD34+ hematopoietic progenitor cells, stringently purified from the peripheral blood of 20 normal donors, showed an impaired survival and clonogenic capacity after exposure to either heat-inactivated human immunodeficiency virus (HIV) 1 (strain IIIB) or cross-linked envelope gp120. Cell cycle analysis, performed at different times in serum-free liquid culture, showed an accumulation in G0/G1 in HIV-1- or gp120-treated cells and a progressive increase of cells with subdiploid DNA content, characteristic of apoptosis. In blocking experiments with anti-transforming growth factor (TGF) beta 1 neutralizing serum or TGF-beta 1 oligonucleotides, we demonstrated that the HIV-1- or gp120-mediated suppression of CD34+ cell growth was almost entirely due to an upregulation of endogenous TGF-beta 1 produced by purified hematopoietic progenitors. Moreover, by using a sensitive assay on the CCL64 cell line, increased levels of bioactive TGF-beta 1 were recovered in the culture supernatant of HIV-1/gp120-treated CD34+ cells. Anti-TGF-beta 1 neutralizing serum or TGF-beta 1 oligonucleotides were also effective in inducing a significant increase of the plating efficiency of CD34+ cells, purified from the peripheral blood of three HIV-1-seropositive individuals, suggesting that a similar mechanism may be also operative in vivo. The relevance of these findings to a better understanding of the pathogenesis of HIV-1-related cytopenias is discussed.


1999 ◽  
Vol 73 (5) ◽  
pp. 3968-3974 ◽  
Author(s):  
Svetlana Glushakova ◽  
Jean-Charles Grivel ◽  
Kalachar Suryanarayana ◽  
Pascal Meylan ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT The nef gene is important for the pathogenicity associated with simian immunodeficiency virus infection in rhesus monkeys and with human immunodeficiency virus type 1 (HIV-1) infection in humans. The mechanisms by which nef contributes to pathogenesis in vivo remain unclear. We investigated the contribution of nef to HIV-1 replication in human lymphoid tissue ex vivo by studying infection with parental HIV-1 strain NL4-3 and with anef mutant (ΔnefNL4-3). In human tonsillar histocultures, NL4-3 replicated to higher levels than ΔnefNL4-3 did. Increased virus production with NL4-3 infection was associated with increased numbers of productively infected cells and greater loss of CD4+ T cells over time. While the numbers of productively infected T cells were increased in the presence of nef, the levels of viral expression and production per infected T cell were similar whether the nefgene was present or not. Exogenous interleukin-2 (IL-2) increased HIV-1 production in NL4-3-infected tissue in a dose-dependent manner. In contrast, ΔnefNL4-3 production was enhanced only marginally by IL-2. Thus, Nef can facilitate HIV-1 replication in human lymphoid tissue ex vivo by increasing the numbers of productively infected cells and by increasing the responsiveness to IL-2 stimulation.


2005 ◽  
Vol 79 (4) ◽  
pp. 2087-2096 ◽  
Author(s):  
Hirotomo Nakata ◽  
Kenji Maeda ◽  
Toshikazu Miyakawa ◽  
Shiro Shibayama ◽  
Masayoshi Matsuo ◽  
...  

ABSTRACT We established human peripheral blood mononuclear cell (PBMC)-transplanted R5 human immunodeficiency virus type 1 isolate JR-FL (HIV-1JR-FL)-infected, nonobese diabetic-SCID, interleukin 2 receptor γ-chain-knocked-out (NOG) mice, in which massive and systemic HIV-1 infection occurred. The susceptibility of the implanted PBMC to the infectivity and cytopathic effect of R5 HIV-1 appeared to stem from hyperactivation of the PBMC, which rapidly proliferated and expressed high levels of CCR5. When a novel spirodiketopiperazine-containing CCR5 inhibitor, AK602/ONO4128/GW873140 (molecular weight, 614), was administered to the NOG mice 1 day after R5 HIV-1 inoculation, the replication and cytopathic effects of R5 HIV-1 were significantly suppressed. In saline-treated mice (n = 7), the mean human CD4+/CD8+ cell ratio was 0.1 on day 16 after inoculation, while levels in mice (n = 8) administered AK602 had a mean value of 0.92, comparable to levels in uninfected mice (n = 7). The mean number of HIV-RNA copies in plasma in saline-treated mice were ∼106/ml on day 16, while levels in AK602-treated mice were 1.27 × 103/ml (P = 0.001). AK602 also significantly suppressed the number of proviral DNA copies and serum p24 levels (P = 0.001). These data suggest that the present NOG mouse system should serve as a small-animal AIDS model and warrant that AK602 be further developed as a potential therapeutic for HIV-1 infection.


2005 ◽  
Vol 25 (5) ◽  
pp. 1620-1633 ◽  
Author(s):  
P. Pavan Kumar ◽  
Prabhat Kumar Purbey ◽  
Dyavar S. Ravi ◽  
Debashis Mitra ◽  
Sanjeev Galande

ABSTRACT One hallmark of human immunodeficiency virus type 1 (HIV-1) infection is the dysregulation of cytokine gene expression in T cells. Transfection of T cells with human T-cell leukemia type 1 or 2 transactivator results in the induction of the T-cell-restricted cytokine interleukin-2 (IL-2) and its receptor (IL-2Rα). However, no T-cell-specific factor(s) has been directly linked with the regulation of IL-2 and IL-2Rα transcription by influencing the promoter activity. Thymocytes from SATB1 (special AT-rich sequence binding protein 1) knockout mice have been shown to ectopically express IL-2Rα, suggesting involvement of SATB1 in its negative regulation. Here we show that SATB1, a T-cell-specific global gene regulator, binds to the promoters of human IL-2 and IL-2Rα and recruits histone deacetylase 1 (HDAC1) in vivo. SATB1 also interacts with Tat in HIV-1-infected T cells. The functional interaction between HIV-1 Tat and SATB1 requires its PDZ-like domain, and the binding of the HDAC1 corepressor occurs through the same. Furthermore, Tat competitively displaces HDAC1 that is bound to SATB1, leading to increased acetylation of the promoters in vivo. Transduction with SATB1 interaction-deficient soluble Tat (Tat 40-72) and reporter assays using a transactivation-negative mutant (C22G) of Tat unequivocally demonstrated that the displacement of HDAC1 itself is sufficient for derepression of these promoters in vivo. These results suggest a novel mechanism by which HIV-1 Tat might overcome SATB1-mediated repression in T cells.


Sign in / Sign up

Export Citation Format

Share Document