scholarly journals The Relative Impact of Community and Hospital Antibiotic Use on the Selection of Extended-spectrum Beta-lactamase–producing Escherichia coli

2018 ◽  
Vol 69 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Derek R MacFadden ◽  
David N Fisman ◽  
William P Hanage ◽  
Marc Lipsitch

Abstract Antibiotic stewardship programs have traditionally focused on reducing hospital antibiotic use. However, reducing community antibiotic prescribing could have substantial impacts in both hospital and community settings. We developed a deterministic model of transmission of extended-spectrum beta-lactamase–producing Escherichia coli in both the community and hospitals. We fit the model to existing, national-level antibiotic use and resistance prevalence data from Sweden. Across a range of conditions, a given relative change in antibiotic use in the community had a greater impact on resistance prevalence in both the community and hospitals than an equivalent relative change in hospital use. However, on a per prescription basis, changes in antibiotic use in hospitals had the greatest impact. The magnitude of changes in prevalence were modest, even with large changes in antimicrobial use. These data support the expansion of stewardship programs/interventions beyond the walls of hospitals, but also suggest that such efforts would benefit hospitals themselves.

2019 ◽  
Vol 85 (17) ◽  
Author(s):  
Egil A. J. Fischer ◽  
Cindy M. Dierikx ◽  
Alieda van Essen-Zandbergen ◽  
Dik Mevius ◽  
Arjan Stegeman ◽  
...  

ABSTRACT Extended-spectrum-beta-lactamase (ESBL)/AmpC-producing Escherichia coli strains are widely found in E. coli isolates from broiler feces, largely due to the presence of the blaCTX-M-1 gene on IncI1 plasmids. Plasmid carriage is theorized to cause fitness loss and thus should decrease under conditions of reduced antibiotic use. However, in vitro studies showed plasmid carriage to increase in the absence of antimicrobials, due to plasmid conjugation. We investigated whether this translates to increased levels of plasmid in the gastrointestinal tracts of chickens, where conjugation rates may be different and subtle differences in growth rates may have a larger impact on colonization. Eight groups of five chickens were orally inoculated at 4 days of age with a 0.5-ml volume containing 106 CFU/ml E. coli cells, of which 0%, 0.1%, 10%, or 100% carried the IncI1 plasmid with the gene blaCTX-M-1. At 13 time points during 41 days, fecal samples were taken from each chicken. E. coli strains with and without plasmids were quantified. Trends in E. coli subpopulations were analyzed using generalized linear mixed models, and population dynamics were studied by fitting to a mechanistic model. Trends in E. coli subpopulations were different between groups rather than between individual chickens, suggesting substantial levels of E. coli exchange between chickens in a group. The IncI1 plasmid carrying blaCTX-M-1 was transferred with conjugation coefficients at levels higher than those observed in vitro. Across groups, the plasmids disappeared or were established independently of the initial fraction of plasmid-carrying E. coli, but no major increase occurred as observed in vitro. Differences in growth rates were observed, but competitive exclusion of plasmid-carrying variants was counteracted by conjugation. IMPORTANCE Bacteria that produce extended-spectrum beta-lactamases are resistant to an important class of antimicrobials in human and veterinary medicine. Reduction in antibiotic use is expected to decrease the prevalence of resistance. However, resistance genes often lie on plasmids which can be copied and transferred to other bacteria by conjugation, so in vitro resistance was observed to increase in the absence of antimicrobials. We sought to determine whether this also occurs in the chicken gut and if competitive exclusion by similar E. coli variants without the resistance occurred. We studied the excretion of E. coli carrying IncI1 plasmids with the blaCTX-M-1 resistance gene in small groups of broiler chickens, after inoculating the chickens with E. coli suspensions containing different fractions of plasmid-carrying cells. Our results showed little variation between chickens within groups but large differences between groups that were independent of the ratio of variants with and without the plasmid and with persistence or extinction of the plasmid. However, there was no major plasmid increase as observed in vitro. We conclude that in vivo studies with sufficient independent replications are important for intervention studies on plasmid-mediated antimicrobial resistance.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2021 ◽  
Vol 6 (2) ◽  
pp. 105
Author(s):  
Regina Ama Banu ◽  
Jorge Matheu Alvarez ◽  
Anthony J. Reid ◽  
Wendemagegn Enbiale ◽  
Appiah-Korang Labi ◽  
...  

Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103–2.3 × 105) and 2.79 (IQR, 0.96–6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103–3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105–5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.


Sign in / Sign up

Export Citation Format

Share Document