Network attributes describe a similarity between deep neural networks and large scale brain networks

Author(s):  
Kosuke Takagi

Abstract Despite the recent success of deep learning models in solving various problems, their ability is still limited compared with human intelligence, which has the flexibility to adapt to a changing environment. To obtain a model which achieves adaptability to a wide range of problems and tasks is a challenging problem. To achieve this, an issue that must be addressed is identification of the similarities and differences between the human brain and deep neural networks. In this article, inspired by the human flexibility which might suggest the existence of a common mechanism allowing solution of different kinds of tasks, we consider a general learning process in neural networks, on which no specific conditions and constraints are imposed. Subsequently, we theoretically show that, according to the learning progress, the network structure converges to the state, which is characterized by a unique distribution model with respect to network quantities such as the connection weight and node strength. Noting that the empirical data indicate that this state emerges in the large scale network in the human brain, we show that the same state can be reproduced in a simple example of deep learning models. Although further research is needed, our findings provide an insight into the common inherent mechanism underlying the human brain and deep learning. Thus, our findings provide suggestions for designing efficient learning algorithms for solving a wide variety of tasks in the future.

2021 ◽  
Vol 6 (5) ◽  
pp. 10-15
Author(s):  
Ela Bhattacharya ◽  
D. Bhattacharya

COVID-19 has emerged as the latest worrisome pandemic, which is reported to have its outbreak in Wuhan, China. The infection spreads by means of human contact, as a result, it has caused massive infections across 200 countries around the world. Artificial intelligence has likewise contributed to managing the COVID-19 pandemic in various aspects within a short span of time. Deep Neural Networks that are explored in this paper have contributed to the detection of COVID-19 from imaging sources. The datasets, pre-processing, segmentation, feature extraction, classification and test results which can be useful for discovering future directions in the domain of automatic diagnosis of the disease, utilizing artificial intelligence-based frameworks, have been investigated in this paper.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 456 ◽  
Author(s):  
Hao Cheng ◽  
Dongze Lian ◽  
Shenghua Gao ◽  
Yanlin Geng

Inspired by the pioneering work of the information bottleneck (IB) principle for Deep Neural Networks’ (DNNs) analysis, we thoroughly study the relationship among the model accuracy, I ( X ; T ) and I ( T ; Y ) , where I ( X ; T ) and I ( T ; Y ) are the mutual information of DNN’s output T with input X and label Y. Then, we design an information plane-based framework to evaluate the capability of DNNs (including CNNs) for image classification. Instead of each hidden layer’s output, our framework focuses on the model output T. We successfully apply our framework to many application scenarios arising in deep learning and image classification problems, such as image classification with unbalanced data distribution, model selection, and transfer learning. The experimental results verify the effectiveness of the information plane-based framework: Our framework may facilitate a quick model selection and determine the number of samples needed for each class in the unbalanced classification problem. Furthermore, the framework explains the efficiency of transfer learning in the deep learning area.


2020 ◽  
Author(s):  
Albahli Saleh ◽  
Ali Alkhalifah

BACKGROUND To diagnose cardiothoracic diseases, a chest x-ray (CXR) is examined by a radiologist. As more people get affected, doctors are becoming scarce especially in developing countries. However, with the advent of image processing tools, the task of diagnosing these cardiothoracic diseases has seen great progress. A lot of researchers have put in work to see how the problems associated with medical images can be mitigated by using neural networks. OBJECTIVE Previous works used state-of-the-art techniques and got effective results with one or two cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic diseases to efficiently diagnose the chest diseases in different classes as shown in Figure 1. In this regard, our major contributions are classifying various cardiothoracic diseases to detect a specific chest disease based on CXR, use the advantage of GANs to overcome the shortages of small training datasets, address the problem of imbalanced data; and implementing optimal deep neural network architecture with different hyper-parameters to improve the model with the best accuracy. METHODS For this research, we are not building a model from scratch due to computational restraints as they require very high-end computers. Rather, we use a Convolutional Neural Network (CNN) as a class of deep neural networks to propose a generative adversarial network (GAN) -based model to generate synthetic data for training the data as the amount of the data is limited. We will use pre-trained models which are models that were trained on a large benchmark dataset to solve a problem similar to the one we want to solve. For example, the ResNet-152 model we used was initially trained on the ImageNet dataset. RESULTS After successful training and validation of the models we developed, ResNet-152 with image augmentation proved to be the best model for the automatic detection of cardiothoracic disease. However, one of the main problems associated with radiographic deep learning projects and research is the scarcity and unavailability of enough datasets which is a key component of all deep learning models as they require a lot of data for training. This is the reason why some of our models had image augmentation to increase the number of images without duplication. As more data are collected in the field of chest radiology, the models could be retrained to improve the accuracies of the models as deep learning models improve with more data. CONCLUSIONS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using deep learning models, the research aims to evaluate the effectiveness and accuracy of different convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from x-ray images compared to diagnosis by experts in the medical community.


2020 ◽  
pp. 107754632092914
Author(s):  
Mohammed Alabsi ◽  
Yabin Liao ◽  
Ala-Addin Nabulsi

Deep learning has seen tremendous growth over the past decade. It has set new performance limits for a wide range of applications, including computer vision, speech recognition, and machinery health monitoring. With the abundance of instrumentation data and the availability of high computational power, deep learning continues to prove itself as an efficient tool for the extraction of micropatterns from machinery big data repositories. This study presents a comparative study for feature extraction capabilities using stacked autoencoders considering the use of expert domain knowledge. Case Western Reserve University bearing dataset was used for the study, and a classifier was trained and tested to extract and visualize features from 12 different failure classes. Based on the raw data preprocessing, four different deep neural network structures were studied. Results indicated that integrating domain knowledge with deep learning techniques improved feature extraction capabilities and reduced the deep neural networks size and computational requirements without the need for exhaustive deep neural networks architecture tuning and modification.


2018 ◽  
Author(s):  
Karim Rajaei ◽  
Yalda Mohsenzadeh ◽  
Reza Ebrahimpour ◽  
Seyed-Mahdi Khaligh-Razavi

AbstractCore object recognition, the ability to rapidly recognize objects despite variations in their appearance, is largely solved through the feedforward processing of visual information. Deep neural networks are shown to achieve human-level performance in these tasks, and explain the primate brain representation. On the other hand, object recognition under more challenging conditions (i.e. beyond the core recognition problem) is less characterized. One such example is object recognition under occlusion. It is unclear to what extent feedforward and recurrent processes contribute in object recognition under occlusion. Furthermore, we do not know whether the conventional deep neural networks, such as AlexNet, which were shown to be successful in solving core object recognition, can perform similarly well in problems that go beyond the core recognition. Here, we characterize neural dynamics of object recognition under occlusion, using magnetoencephalography (MEG), while participants were presented with images of objects with various levels of occlusion. We provide evidence from multivariate analysis of MEG data, behavioral data, and computational modelling, demonstrating an essential role for recurrent processes in object recognition under occlusion. Furthermore, the computational model with local recurrent connections, used here, suggests a mechanistic explanation of how the human brain might be solving this problem.Author SummaryIn recent years, deep-learning-based computer vision algorithms have been able to achieve human-level performance in several object recognition tasks. This has also contributed in our understanding of how our brain may be solving these recognition tasks. However, object recognition under more challenging conditions, such as occlusion, is less characterized. Temporal dynamics of object recognition under occlusion is largely unknown in the human brain. Furthermore, we do not know if the previously successful deep-learning algorithms can similarly achieve human-level performance in these more challenging object recognition tasks. By linking brain data with behavior, and computational modeling, we characterized temporal dynamics of object recognition under occlusion, and proposed a computational mechanism that explains both behavioral and the neural data in humans. This provides a plausible mechanistic explanation for how our brain might be solving object recognition under more challenging conditions.


2020 ◽  
Author(s):  
Wesley Wei Qian ◽  
Nathan T. Russell ◽  
Claire L. W. Simons ◽  
Yunan Luo ◽  
Martin D. Burke ◽  
...  

<div>Accurate <i>in silico</i> models for the prediction of novel chemical reaction outcomes can be used to guide the rapid discovery of new reactivity and enable novel synthesis strategies for newly discovered lead compounds. Recent advances in machine learning, driven by deep learning models and data availability, have shown utility throughout synthetic organic chemistry as a data-driven method for reaction prediction. Here we present a machine-intelligence approach to predict the products of an organic reaction by integrating deep neural networks with a probabilistic and symbolic inference that flexibly enforces chemical constraints and accounts for prior chemical knowledge. We first train a graph convolutional neural network to estimate the likelihood of changes in covalent bonds, hydrogen counts, and formal charges. These estimated likelihoods govern a probability distribution over potential products. Integer Linear Programming is then used to infer the most probable products from the probability distribution subject to heuristic rules such as the octet rule and chemical constraints that reflect a user's prior knowledge. Our approach outperforms previous graph-based neural networks by predicting products with more than 90% accuracy, demonstrates intuitive chemical reasoning through a learned attention mechanism, and provides generalizability across various reaction types. Furthermore, we demonstrate the potential for even higher model accuracy when complemented by expert chemists contributing to the system, boosting both machine and expert performance. The results show the advantages of empowering deep learning models with chemical intuition and knowledge to expedite the drug discovery process.</div>


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-24
Author(s):  
Gokul Krishnan ◽  
Sumit K. Mandal ◽  
Manvitha Pannala ◽  
Chaitali Chakrabarti ◽  
Jae-Sun Seo ◽  
...  

In-memory computing (IMC) on a monolithic chip for deep learning faces dramatic challenges on area, yield, and on-chip interconnection cost due to the ever-increasing model sizes. 2.5D integration or chiplet-based architectures interconnect multiple small chips (i.e., chiplets) to form a large computing system, presenting a feasible solution beyond a monolithic IMC architecture to accelerate large deep learning models. This paper presents a new benchmarking simulator, SIAM, to evaluate the performance of chiplet-based IMC architectures and explore the potential of such a paradigm shift in IMC architecture design. SIAM integrates device, circuit, architecture, network-on-chip (NoC), network-on-package (NoP), and DRAM access models to realize an end-to-end system. SIAM is scalable in its support of a wide range of deep neural networks (DNNs), customizable to various network structures and configurations, and capable of efficient design space exploration. We demonstrate the flexibility, scalability, and simulation speed of SIAM by benchmarking different state-of-the-art DNNs with CIFAR-10, CIFAR-100, and ImageNet datasets. We further calibrate the simulation results with a published silicon result, SIMBA. The chiplet-based IMC architecture obtained through SIAM shows 130 and 72 improvement in energy-efficiency for ResNet-50 on the ImageNet dataset compared to Nvidia V100 and T4 GPUs.


2021 ◽  
Vol 118 (43) ◽  
pp. e2103091118
Author(s):  
Cong Fang ◽  
Hangfeng He ◽  
Qi Long ◽  
Weijie J. Su

In this paper, we introduce the Layer-Peeled Model, a nonconvex, yet analytically tractable, optimization program, in a quest to better understand deep neural networks that are trained for a sufficiently long time. As the name suggests, this model is derived by isolating the topmost layer from the remainder of the neural network, followed by imposing certain constraints separately on the two parts of the network. We demonstrate that the Layer-Peeled Model, albeit simple, inherits many characteristics of well-trained neural networks, thereby offering an effective tool for explaining and predicting common empirical patterns of deep-learning training. First, when working on class-balanced datasets, we prove that any solution to this model forms a simplex equiangular tight frame, which, in part, explains the recently discovered phenomenon of neural collapse [V. Papyan, X. Y. Han, D. L. Donoho, Proc. Natl. Acad. Sci. U.S.A. 117, 24652–24663 (2020)]. More importantly, when moving to the imbalanced case, our analysis of the Layer-Peeled Model reveals a hitherto-unknown phenomenon that we term Minority Collapse, which fundamentally limits the performance of deep-learning models on the minority classes. In addition, we use the Layer-Peeled Model to gain insights into how to mitigate Minority Collapse. Interestingly, this phenomenon is first predicted by the Layer-Peeled Model before being confirmed by our computational experiments.


2020 ◽  
Author(s):  
Wesley Wei Qian ◽  
Nathan T. Russell ◽  
Claire L. W. Simons ◽  
Yunan Luo ◽  
Martin D. Burke ◽  
...  

<div>Accurate <i>in silico</i> models for the prediction of novel chemical reaction outcomes can be used to guide the rapid discovery of new reactivity and enable novel synthesis strategies for newly discovered lead compounds. Recent advances in machine learning, driven by deep learning models and data availability, have shown utility throughout synthetic organic chemistry as a data-driven method for reaction prediction. Here we present a machine-intelligence approach to predict the products of an organic reaction by integrating deep neural networks with a probabilistic and symbolic inference that flexibly enforces chemical constraints and accounts for prior chemical knowledge. We first train a graph convolutional neural network to estimate the likelihood of changes in covalent bonds, hydrogen counts, and formal charges. These estimated likelihoods govern a probability distribution over potential products. Integer Linear Programming is then used to infer the most probable products from the probability distribution subject to heuristic rules such as the octet rule and chemical constraints that reflect a user's prior knowledge. Our approach outperforms previous graph-based neural networks by predicting products with more than 90% accuracy, demonstrates intuitive chemical reasoning through a learned attention mechanism, and provides generalizability across various reaction types. Furthermore, we demonstrate the potential for even higher model accuracy when complemented by expert chemists contributing to the system, boosting both machine and expert performance. The results show the advantages of empowering deep learning models with chemical intuition and knowledge to expedite the drug discovery process.</div>


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Soha A. Nossier ◽  
Julie Wall ◽  
Mansour Moniri ◽  
Cornelius Glackin ◽  
Nigel Cannings

Recent speech enhancement research has shown that deep learning techniques are very effective in removing background noise. Many deep neural networks are being proposed, showing promising results for improving overall speech perception. The Deep Multilayer Perceptron, Convolutional Neural Networks, and the Denoising Autoencoder are well-established architectures for speech enhancement; however, choosing between different deep learning models has been mainly empirical. Consequently, a comparative analysis is needed between these three architecture types in order to show the factors affecting their performance. In this paper, this analysis is presented by comparing seven deep learning models that belong to these three categories. The comparison includes evaluating the performance in terms of the overall quality of the output speech using five objective evaluation metrics and a subjective evaluation with 23 listeners; the ability to deal with challenging noise conditions; generalization ability; complexity; and, processing time. Further analysis is then provided while using two different approaches. The first approach investigates how the performance is affected by changing network hyperparameters and the structure of the data, including the Lombard effect. While the second approach interprets the results by visualizing the spectrogram of the output layer of all the investigated models, and the spectrograms of the hidden layers of the convolutional neural network architecture. Finally, a general evaluation is performed for supervised deep learning-based speech enhancement while using SWOC analysis, to discuss the technique’s Strengths, Weaknesses, Opportunities, and Challenges. The results of this paper contribute to the understanding of how different deep neural networks perform the speech enhancement task, highlight the strengths and weaknesses of each architecture, and provide recommendations for achieving better performance. This work facilitates the development of better deep neural networks for speech enhancement in the future.


Sign in / Sign up

Export Citation Format

Share Document